3 resultados para whey solutions

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective isoelectric whey protein precipitation and aggregation is carried out at laboratory scale in a standard configuration batch agitation vessel. Geometric scale-up of this operation is implemented on the basis of constant impeller power input per unit volume and subsequent clarification is achieved by high speed disc-stack centrifugation. Particle size and fractal geometry are important in achieving efficient separation while aggregates need to be strong enough to resist the more extreme levels of shear that are encountered during processing, for example through pumps, valves and at the centrifuge inlet zone. This study investigates how impeller agitation intensity and ageing time affect aggregate size, strength, fractal dimension and hindered settling rate at laboratory scale in order to determine conditions conducive for improved separation. Particle strength is measured by observing the effects of subjecting aggregates to moderate and high levels of process shear in a capillary rig and through a partially open ball-valve respectively. The protein precipitate yield is also investigated with respect to ageing time and impeller agitation intensity. A pilot scale study is undertaken to investigate scale-up and how agitation vessel shear affects centrifugal separation efficiency. Laboratory scale studies show that precipitates subject to higher impeller shear-rates during the addition of the precipitation agent are smaller but more compact than those subject to lower impeller agitation and are better able to resist turbulent breakage. They are thus more likely to provide a better feed for more efficient centrifugal separation. Protein precipitation yield improves significantly with ageing, and 50 minutes of ageing is required to obtain a 70 - 80% yield of α-lactalbumin. Geometric scale-up of the agitation vessel at constant power per unit volume results in aggregates of broadly similar size exhibiting similar trends but with some differences due to the absence of dynamic similarity due to longer circulation time and higher tip speed in the larger vessel. Disc stack centrifuge clarification efficiency curves show aggregates formed at higher shear-rates separate more efficiently, in accordance with laboratory scale projections. Exposure of aggregates to highly turbulent conditions, even for short exposure times, can lead to a large reduction in particle size. Thus, improving separation efficiencies can be achieved by the identification of high shear zones in a centrifugal process and the subsequent elimination or amelioration of such.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using C57BL/6J mice fed whey protein isolate (WPI) enriched high fat (HFD) or low-fat diets (LFD), this study tested the hypothesis that WPI directly impacts on adiposity by influencing lipid metabolism. WPI suppressed HFD-induced body fat and increased lean mass at 8 weeks of dietary challenge despite elevated plasma triacylglycerol (TAG) levels, suggesting reduced TAG storage. WPI reduced HFD-associated hypothalamic leptin and insulin receptor (IR) mRNA expression, and prevented HFD-associated reductions in adipose tissue IR and glucose transporter 4 expression. These effects were largely absent at 21 weeks of HFD feeding, however WPI increased lean mass and cause a trend towards decreased fat mass, with notable increased Lactobacillus and decreased Clostridium gut bacterial species. Increasing the protein to carbohydrate ratio enhanced the above effects, and shifted the gut microbiota composition away from the HFD group. Seven weeks of WPI intake with a LFD decreased insulin signalling gene expression in the adipose tissue in association with an increased fat accumulation. WPI reduced intestinal weight and length, suggesting a potential functional relationship between WPI, gastro-intestinal morphology and insulin related signalling in the adipose. Extending the study to 15 weeks, did not affect adipose fat weight, but decreased energy intake, weight gain and intestinal length. The functionality of protein sensing lysophosphatidic acid receptor 5 (LPA5) in 3T3-L1 pre-adipocytes was assessed. Over-expression of the receptor in 3T3-L1 pre-adipocytes provided a growth advantage to the cells and suppressed cellular differentiation into mature fat cells. In conclusion, the data demonstrates WPI impacts on adiposity by influencing lipid metabolism in a temporal manner, resulting possibly due to changes in lean mass, hypothalamic and adipose gene expression, gut microbiota and gastrointestinal morphology. The data also showed LPA5 is a novel candidate in regulating of preadipocyte growth and differentiation, and may mediate dietary protein effects on adipose tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavour release from food is determined by the binding of flavours to other food ingredients and the partition of flavour molecules among different phases. Food emulsions are used as delivery systems for food flavours, and tailored structuring in emulsions provides novel means to better control flavour release. The current study investigated four structured oil-in-water emulsions with structuring in the oil phase, oil-water interface, and water phase. Oil phase structuring was achieved by the formation of monoglyceride (MG) liquid crystals in the oil droplets (MG structured emulsions). Structured interface was created by the adsorption of a whey protein isolate (WPI)-pectin double layer at the interface (multilayer emulsion). Water phase structured emulsions referred to emulsion filled protein gels (EFP gels), where emulsion droplets were embedded in WPI gel network, and emulsions with maltodextrins (MDs) of different dextrose-equivalent (DE) values. Flavour compounds with different physicochemical properties were added into the emulsions, and flavour release (release rate, headspace concentration and air-emulsion partition coefficient) was described by GC headspace analysis. Emulsion structures, including crystalline structure, particle size, emulsion stability, rheology, texture, and microstructures, were characterized using differential scanning calorimetry and X-ray diffraction, light scattering, multisample analytical centrifuge, rheometry, texture analysis, and confocal laser scanning microscopy, respectively. In MG structured emulsions, MG self-assembled into liquid crystalline structures and stable β-form crystals were formed after 3 days of storage at 25 °C. The inclusion of MG crystals allowed tween 20 stabilized emulsions to present viscoelastic properties, and it made WPI stabilized emulsions more sensitive to the change of pH and NaCl concentrations. Flavour compounds in MG structured emulsions had lower initial headspace concentration and air-emulsion partition coefficients than those in unstructured emulsions. Flavour release can be modulated by changing MG content, oil content and oil type. WPI-pectin multilayer emulsions were stable at pH 5.0, 4.0, and 3.0, but they presented extensive creaming when subjected to salt solutions with NaCl ≥ 150 mM and mixed with artificial salivas. Increase of pH from 5.0 to 7.0 resulted in higher headspace concentration but unchanged release rate, and increase of NaCl concentration led to increased headspace concentration and release rate. The study also showed that salivas could trigger higher release of hydrophobic flavours and lower release of hydrophilic flavours. In EFP gels, increases in protein content and oil content contributed to gels with higher storage modulus and force at breaking. Flavour compounds had significantly reduced release rates and air-emulsion partition coefficients in the gels than the corresponding ungelled emulsions, and the reduction was in line with the increase of protein content. Gels with stronger gel network but lower oil content were prepared, and lower or unaffected release rates of the flavours were observed. In emulsions containing maltodextrins, water was frozen at a much lower temperature, and emulsion stability was greatly improved when subjected to freeze-thawing. Among different MDs, MD DE 6 offered the emulsion the highest stability. Flavours had lower air-emulsion partition coefficients in the emulsions with MDs than those in the emulsion without MD. Moreover, the involvement of MDs in the emulsions allowed most flavours had similar release profiles before and after freeze-thaw treatment. The present study provided information about different structured emulsions as delivery systems for flavour compounds, and on how food structure can be designed to modulate flavour release, which could be helpful in the development of functional foods with improved flavour profile.