4 resultados para wearable audio

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When miniaturized wireless sensors are placed on or close to the human body, they can experience a significant loss inperformance due to antenna detuning, resulting in degradationof wireless performance as well as decreased battery lifetime.Several antenna tuning technologies have been proposed formobile wireless devices but devices suitable for widespread integration have yet to emerge. This paper highlights the possible advantages of antenna tuning for wearable wireless sensors and presents the design and characterization of a prototype 433MHz tuner module.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colour is everywhere in our daily lives and impacts things like our mood, yet we rarely take notice of it. One method of capturing and analysing the predominant colours that we encounter is through visual lifelogging devices such as the SenseCam. However an issue related to these devices is the privacy concerns of capturing image level detail. Therefore in this work we demonstrate a hardware prototype wearable camera that captures only one pixel - of the dominant colour prevelant in front of the user, thus circumnavigating the privacy concerns raised in relation to lifelogging. To simulate whether the capture of dominant colour would be sufficient we report on a simulation carried out on 1.2 million SenseCam images captured by a group of 20 individuals. We compare the dominant colours that different groups of people are exposed to and show that useful inferences can be made from this data. We believe our prototype may be valuable in future experiments to capture colour correlated associated with an individual's mood.Colour is everywhere in our daily lives and impacts things like our mood, yet we rarely take notice of it. One method of capturing and analysing the predominant colours that we encounter is through visual lifelogging devices such as the SenseCam. However an issue related to these devices is the privacy concerns of capturing image level detail. Therefore in this work we demonstrate a hardware prototype wearable camera that captures only one pixel - of the dominant colour prevelant in front of the user, thus circumnavigating the privacy concerns raised in relation to lifelogging. To simulate whether the capture of dominant colour would be sufficient we report on a simulation carried out on 1.2 million SenseCam images captured by a group of 20 individuals. We compare the dominant colours that different groups of people are exposed to and show that useful inferences can be made from this data. We believe our prototype may be valuable in future experiments to capture colour correlated associated with an individual's mood.