17 resultados para wave power
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.
Resumo:
The wave energy industry is progressing towards an advanced stage of development, with consideration being given to the selection of suitable sites for the first commercial installations. An informed, and accurate, characterisation of the wave energy resource is an essential aspect of this process. Ireland is exposed to an energetic wave climate, however many features of this resource are not well understood. This thesis assesses and characterises the wave energy resource that has been measured and modelled at the Atlantic Marine Energy Test Site, a facility for conducting sea trials of floating wave energy converters that is being developed near Belmullet, on the west coast of Ireland. This characterisation process is undertaken through the analysis of metocean datasets that have previously been unavailable for exposed Irish sites. A number of commonly made assumptions in the calculation of wave power are contested, and the uncertainties resulting from their application are demonstrated. The relationship between commonly used wave period parameters is studied, and its importance in the calculation of wave power quantified, while it is also shown that a disconnect exists between the sea states which occur most frequently at the site and those that contribute most to the incident wave energy. Additionally, observations of the extreme wave conditions that have occurred at the site and estimates of future storms that devices will need to withstand are presented. The implications of these results for the design and operation of wave energy converters are discussed. The foremost contribution of this thesis is the development of an enhanced understanding of the fundamental nature of the wave energy resource at the Atlantic Marine Energy Test Site. The results presented here also have a wider relevance, and can be considered typical of other, similarly exposed, locations on Ireland’s west coast.
Resumo:
Wave measurement is of vital importance for assessing the wave power resources and for developing wave energy devices, especially for the wave energy production and the survivability of the wave energy device. Wave buoys are one of the most popular measuring technologies developed and used for long-term wave measurements. In order to figure out whether the wave characteristics can be recorded by using the wave buoys accurately, an experimental study was carried out on the performance of three wave buoy models, viz two WaveScan buoys and one ODAS buoy, in a wave tank using the European FP7 MARINET facilities. This paper presents the test results in both time and frequency domains and the comparison between the wave buoys and wave gauge measurements. The analysis results reveal that for both regular and irregular waves, the WaveScan buoys have better performances than the ODAS buoy in terms of accuracy and the WaveScan buoys measurements have a very good correlation with those from the wave gauges.
Resumo:
This paper presents an investigation on air compressibility in the air chamber and its effects on the power conversion of oscillating water column (OWC) devices. As it is well known that for practical OWC plants, their air chambers may be large enough for accommodating significant air compressibility, the “spring effect,” an effect that is frequently and simply regarded to store and release energy during the reciprocating process of a wave cycle. Its insight effects on the device’s performance and power conversion, however, have not been studied in detail. This research will investigate the phenomena with a special focus on the effects of air compressibility on wave energy conversion. Air compressibility itself is a complicated nonlinear process in nature, but it can be linearised for numerical simulations under certain assumptions for frequency domain analysis. In this research work, air compressibility in the OWC devices is first linearised and further coupled with the hydrodynamics of the OWC. It is able to show mathematically that in frequency-domain, air compressibility can increase the spring coefficients of both the water body motion and the device motion (if it is a floating device), and enhance the coupling effects between the water body and the structure. Corresponding to these changes, the OWC performance, the capture power, and the optimised Power Take-off (PTO) damping coefficient in the wave energy conversion can be all modified due to air compressibility. To validate the frequency-domain results and understand the problems better, the more accurate time-domain simulations with fewer assumptions have been used for comparison. It is shown that air compressibility may significantly change the dynamic responses and the capacity of converting wave energy of the OWC devices if the air chamber is very large.
Resumo:
There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recently as the potential for power extraction is very significant. Various wave energy converter (WEC) technologies currently exist with the oscillating water column (OWC) type converter being one of the most advanced. There are fundemental differences in the power profile of the pneumatic power supplied by the OWC WEC and that of a wind turbine and this causes significant challenges in the selection and rating of electrical generators for the OWC devises. The thesis initially aims to provide an accurate per-phase equivalent circuit model of the DFIM by investigating various characterisation testing procedures. Novel testing methodologies based on the series-coupling tests is employed and is found to provide a more accurate representation of the DFIM than the standard IEEE testing methods because the series-coupling tests provide a direct method of determining the equivalent-circuit resistances and inductances of the machine. A second novel method known as the extended short-circuit test is also presented and investigated as an alternative characterisation method. Experimental results on a 1.1 kW DFIM and a 30 kW DFIM utilising the various characterisation procedures are presented in the thesis. The various test methods are analysed and validated through comparison of model predictions and torque-versus-speed curves for each induction machine. Sensitivity analysis is also used as a means of quantifying the effect of experimental error on the results taken from each of the testing procedures and is used to determine the suitability of the test procedures for characterising each of the devices. The series-coupling differential test is demonstrated to be the optimum test. The research then focuses on the OWC WEC and the modelling of this device. A software model is implemented based on data obtained from a scaled prototype device situated at the Irish test site. Test data from the electrical system of the device is analysed and this data is used to develop a performance curve for the air turbine utilised in the WEC. This performance curve was applied in a software model to represent the turbine in the electro-mechanical system and the software results are validated by the measured electrical output data from the prototype test device. Finally, once both the DFIM and OWC WEC power take-off system have been modeled succesfully, an investigation of the application of the DFIM to the OWC WEC model is carried out to determine the electrical machine rating required for the pulsating power derived from OWC WEC device. Thermal analysis of a 30 kW induction machine is carried out using a first-order thermal model. The simulations quantify the limits of operation of the machine and enable thedevelopment of rating requirements for the electrical generation system of the OWC WEC. The thesis can be considered to have three sections. The first section of the thesis contains Chapters 2 and 3 and focuses on the accurate characterisation of the doubly-fed induction machine using various testing procedures. The second section, containing Chapter 4, concentrates on the modelling of the OWC WEC power-takeoff with particular focus on the Wells turbine. Validation of this model is carried out through comparision of simulations and experimental measurements. The third section of the thesis utilises the OWC WEC model from Chapter 4 with a 30 kW induction machine model to determine the optimum device rating for the specified machine. Simulations are carried out to perform thermal analysis of the machine to give a general insight into electrical machine rating for an OWC WEC device.
On thermodynamics in the primary power conversion of oscillating water column wave energy converters
Resumo:
The paper presents an investigation to the thermodynamics of the air flow in the air chamber for the oscillating water column wave energy converters, in which the oscillating water surface in the water column pressurizes or de-pressurises the air in the chamber. To study the thermodynamics and the compressibility of the air in the chamber, a method is developed in this research: the power take-off is replaced with an accepted semi-empirical relationship between the air flow rate and the oscillating water column chamber pressure, and the thermodynamic process is simplified as an isentropic process. This facilitates the use of a direct expression for the work done on the power take-off by the flowing air and the generation of a single differential equation that defines the thermodynamic process occurring inside the air chamber. Solving the differential equation, the chamber pressure can be obtained if the interior water surface motion is known or the chamber volume (thus the interior water surface motion) if the chamber pressure is known. As a result, the effects of the air compressibility can be studied. Examples given in the paper have shown the compressibility, and its effects on the power losses for large oscillating water column devices.
Resumo:
The Galway Bay wave energy test site promises to be a vital resource for wave energy researchers and developers. As part of the development of this site, a floating power system is being developed to provide power and data acquisition capabilities, including its function as a local grid connection, allowing for the connection of up to three wave energy converter devices. This work shows results from scaled physical model testing and numerical modelling of the floating power system and an oscillating water column connected with an umbilical. Results from this study will be used to influence further scaled testing as well as the full scale design and build of the floating power system in Galway Bay.
Resumo:
The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.
Resumo:
The European Union has set out an ambitious 20% target for renewable energy use by 2020. It is expected that this will be met mainly by wind energy. Looking towards 2050, reductions in greenhouse gas emissions of 80-95% are to be sought. Given the issues securing this target in the transport and agriculture sectors, it may only be possible to achieve this target if the power sector is carbon neutral well in advance of 2050. This has permitted the vast expansion of offshore renewables, wind, wave and tidal energy. Offshore wind has undergone rapid development in recent years however faces significant challenges up to 2020 to ensure commercial viability without the need for government subsidies. Wave energy is still in the very early stages of development so as yet there has been no commercial roll out. As both of these technologies are to face similar challenges in ensuring they are a viable alternative power generation method to fossil fuels, capitalising on the synergies is potentially a significant cost saving initiative. The advent of hybrid solutions in a variety of configurations is the subject of this thesis. A singular wind-wave energy platform embodies all the attributes of a hybrid system, including sharing space, transmission infrastructure, O&M activities and a platform/foundation. This configuration is the subject of this thesis, and it is found that an OWC Array platform with multi-MegaWatt wind turbines is a technically feasible, and potentially an economically feasible solution in the long term. Methods of design and analysis adopted in this thesis include numerical and physical modelling of power performance, structural analysis, fabrication cost modelling, simplified project economic modelling and time domain reliability modelling of a 210MW hybrid farm. The application of these design and analysis methods has resulted in a hybrid solution capable of producing energy at a cost between €0.22/kWh and €0.31/kWh depending on the source of funding for the project. Further optimisation through detailed design is expected to lower this further. This thesis develops new and existing methods of design and analysis of wind and wave energy devices. This streamlines the process of early stage development, while adhering to the widely adopted Concept Development Protocol, to develop a technically and economically feasible, combined wind-wave energy hybrid solution.
Resumo:
This is the second part of the assessment of primary energy conversions of oscillating water columns (OWCs) wave energy converters. In the first part of the research work, the hydrodynamic performance of OWC wave energy converter has been extensively examined, targeting on a reliable numerical assessment method. In this part of the research work, the application of the air turbine power take-off (PTO) to the OWC device leads to a coupled model of the hydrodynamics and thermodynamics of the OWC wave energy converters, in a manner that under the wave excitation, the varying air volume due to the internal water surface motion creates a reciprocating chamber pressure (alternative positive and negative chamber pressure), whilst the chamber pressure, in turn, modifies the motions of the device and the internal water surface. To do this, the thermodynamics of the air chamber is first examined and applied by including the air compressibility in the oscillating water columns for different types of the air turbine PTOs. The developed thermodynamics is then coupled with the hydrodynamics of the OWC wave energy converters. This proposed assessment method is then applied to two generic OWC wave energy converters (one bottom fixed and another floating), and the numerical results are compared to the experimental results. From the comparison to the model test data, it can be seen that this numerical method is capable of assessing the primary energy conversion for the oscillating water column wave energy converters.
Resumo:
In the development of wave energy converters, the mooring system is a key component for a safe station-keeping and an important factor in the cost of the wave energy production. Generally, when designing a mooring system for a wave energy converter, two important conditions must be considered: (i) that the mooring system must be strong enough to limit the drifting motions, even in extreme waves, tidal and wind conditions and (ii) it must be compliant enough so that the impact on wave energy production can be minimised. It is frequently found that these two conditions are contradictory. The existing solutions mainly include the use of heavy chains, which create a catenary shaped mooring configuration, allowing limited flexibility within the mooring system, and hence very large forces may still be present on mooring lines and thus on anchors. This solution is normally quite expensive if the costs of the materials and installation are included. This paper presents a new solution to the mooring system for wave energy converters within the FP7 project, ‘GeoWAVE’, which is a project aiming to develop a new generation of the moorings system for minimising the loads on mooring lines and anchors, the impact on the device motions for power conversion, and the footprint if it is applicable, and meanwhile the new types of anchors are also addressed within the project. However this paper will focus on the new mooring system by presenting the wave tank test results of the Pelamis wave energy converter model and the new developed mooring system. It can be seen that the new generation of mooring system can significantly reduce the loads on mooring lines and anchors, and reduce the device excursions as a result of the new mooring system when compare to the conventional catenary mooring.
Resumo:
Extracting wave energy from seas has been proven to be very difficult although various technologies have been developed since 1970s. Among the proposed technologies, only few of them have been actually progressed to the advanced stages such as sea trials or pre-commercial sea trial and engineering. One critical question may be how we can design an efficient wave energy converter or how the efficiency of a wave energy converter can be improved using optimal and control technologies, because higher energy conversion efficiency for a wave energy converter is always pursued and it mainly decides the cost of the wave energy production. In this first part of the investigation, some conventional optimal and control technologies for improving wave energy conversion are examined in a form of more physical meanings, rather than the purely complex mathematical expressions, in which it is hoped to clarify some confusions in the development and the terminologies of the technologies and to help to understand the physics behind the optimal and control technologies. As a result of the understanding of the physics and the principles of the optima, a new latching technology is proposed, in which the latching duration is simply calculated from the wave period, rather than based on the future information/prediction, hence the technology could remove one of the technical barriers in implementing this control technology. From the examples given in the context, this new latching control technology can achieve a phase optimum in regular waves, and hence significantly improve wave energy conversion. Further development on this latching control technologies can be found in the second part of the investigation.
Resumo:
This work deals with the numerical studies on hydrodynamics of oscillating water column (OWC) wave energy converters and its damping optimization on maximizing wave energy conversion by the OWC device. As a fundamental step, the hydrodynamic problems have been systematically studied by considering the interactions of the wave-structure and of the wave-internal water surface. Our first attention is on how the hydrodynamic performance can be reliably assessed, especially when it comes to the time-domain analysis, and what the physics behind the considerations is. Further on, a damping optimization for the OWC wave energy converter is also present based on the dynamics of the linear system, and a study on how we can optimize the damping for the given sea states so that the power conversion from irregular waves from irregular waves can be maximized.
Resumo:
This paper presents a study on the numerical simulation of the primary wave energy conversion in the oscillating water column (OWC) wave energy converters (WECs). The new proposed numerical approach consists of three major components: potential flow analysis for the conventional hydrodynamic parameters, such as added mass, damping coefficients, restoring force coefficients and wave excitations; the thermodynamic analysis of the air in the air chamber, which is under the assumptions of the given power take-off characteristics and an isentropic process of air flow. In the formulation, the air compressibility and its effects have been included; and a time-domain analysis by combining the linear potential flow and the thermodynamics of the air flow in the chamber, in which the hydrodynamics and thermodynamics/aerodynamics have been coupled together by the force generated by the pressurised and de-pressurised air in the air chamber, which in turn has effects on the motions of the structure and the internal water surface. As an example, the new developed approach has been applied to a fixed OWC device. The comparisons of the measured data and the simulation results show the new method is very capable of predicting the performance of the OWC devices.