2 resultados para voice activity detection
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.
Resumo:
Background Delirium is highly prevalent, especially in older patients. It independently leads to adverse outcomes, but remains under-detected, particularly hypoactive forms. Although early identification and intervention is important, delirium prevention is key to improving outcomes. The delirium prodrome concept has been mooted for decades, but remains poorly characterised. Greater understanding of this prodrome would promote prompt identification of delirium-prone patients, and facilitate improved strategies for delirium prevention and management. Methods Medical inpatients of ≥70 years were screened for prevalent delirium using the Revised Delirium Rating Scale (DRS--‐R98). Those without prevalent delirium were assessed daily for delirium development, prodromal features and motor subtype. Survival analysis models identified which prodromal features predicted the emergence of incident delirium in the cohort in the first week of admission. The Delirium Motor Subtype Scale-4 was used to ascertain motor subtype. Results Of 555 patients approached, 191 patients were included in the prospective study. The median age was 80 (IQR 10) and 101 (52.9%) were male. Sixty-one patients developed incident delirium within a week of admission. Several prodromal features predicted delirium emergence in the cohort. Firstly, using a novel Prodromal Checklist based on the existing literature, and controlling for confounders, seven predictive behavioural features were identified in the prodromal period (for example, increasing confusion; and being easily distractible). Additionally, using serial cognitive tests and the DRS-R98 daily, multiple cognitive and other core delirium features were detected in the prodrome (for example inattention; and sleep-wake cycle disturbance). Examining longitudinal motor subtypes in delirium cases, subtypes were found to be predominantly stable over time, the most prevalent being hypoactive subtype (62.3%). Discussion This thesis explored multiple aspects of delirium in older medical inpatients, with particular focus on the characterisation of the delirium prodrome. These findings should help to inform future delirium educational programmes, and detection and prevention strategies.