6 resultados para visualisation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the area of food and pharmacy cold storage, temperature distribution is considered as a key factor. Inappropriate distribution of temperature during the cooling process in cold rooms will cause the deterioration of the quality of products and therefore shorten their life-span. In practice, in order to maintain the distribution of temperature at an appropriate level, large amount of electrical energy has to be consumed to cool down the volume of space, based on the reading of a single temperature sensor placed in every cold room. However, it is not clear and visible that what is the change of energy consumption and temperature distribution over time. It lacks of effective tools to visualise such a phenomenon. In this poster, we initially present a solution which combines a visualisation tool with a Computational Fluid Dynamics (CFD) model together to enable users to explore such phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ribosome profiling (ribo-seq) is a recently developed technique that provides genomewide information on protein synthesis (GWIPS) in vivo. The high resolution of ribo-seq is one of the exciting properties of this technique. In Chapter 2, I present a computational method that utilises the sub-codon precision and triplet periodicity of ribosome profiling data to detect transitions in the translated reading frame. Application of this method to ribosome profiling data generated for human HeLa cells allowed us to detect several human genes where the same genomic segment is translated in more than one reading frame. Since the initial publication of the ribosome profiling technique in 2009, there has been a proliferation of studies that have used the technique to explore various questions with respect to translation. A review of the many uses and adaptations of the technique is provided in Chapter 1. Indeed, owing to the increasing popularity of the technique and the growing number of published ribosome profiling datasets, we have developed GWIPS-viz (http://gwips.ucc.ie), a ribo-seq dedicated genome browser. Details on the development of the browser and its usage are provided in Chapter 3. One of the surprising findings of ribosome profiling of initiating ribosomes carried out in 3 independent studies, was the widespread use of non-AUG codons as translation initiation start sites in mammals. Although initiation at non-AUG codons in mammals has been documented for some time, the extent of non-AUG initiation reported by these ribo-seq studies was unexpected. In Chapter 4, I present an approach for estimating the strength of initiating codons based on the leaky scanning model of translation initiation. Application of this approach to ribo-seq data illustrates that initiation at non-AUG codons is inefficient compared to initiation at AUG codons. In addition, our approach provides a probability of initiation score for each start site that allows its strength of initiation to be evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pervasive use of mobile technologies has provided new opportunities for organisations to achieve competitive advantage by using a value network of partners to create value for multiple users. The delivery of a mobile payment (m-payment) system is an example of a value network as it requires the collaboration of multiple partners from diverse industries, each bringing their own expertise, motivations and expectations. Consequently, managing partnerships has been identified as a core competence required by organisations to form viable partnerships in an m-payment value network and an important factor in determining the sustainability of an m-payment business model. However, there is evidence that organisations lack this competence which has been witnessed in the m-payment domain where it has been attributed as an influencing factor in a number of failed m-payment initiatives since 2000. In response to this organisational deficiency, this research project leverages the use of design thinking and visualisation tools to enhance communication and understanding between managers who are responsible for managing partnerships within the m-payment domain. By adopting a design science research approach, which is a problem solving paradigm, the research builds and evaluates a visualisation tool in the form of a Partnership Management Canvas. In doing so, this study demonstrates that when organisations encourage their managers to adopt design thinking, as a way to balance their analytical thinking and intuitive thinking, communication and understanding between the partners increases. This can lead to a shared understanding and a shared commitment between the partners. In addition, the research identifies a number of key business model design issues that need to be considered by researchers and practitioners when designing an m-payment business model. As an applied research project, the study makes valuable contributions to the knowledge base and to the practice of management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discussion tools in existing LEs have few or no integrated tools to analyse student learning. This paper proposes tools not only for integrating social network analytics, but also why we need to semantically tag and track key concepts within posts in order to make student learning in discussions visible. This paper will argue for the importance of semantic markup in discussion tools using screenshots of existing LEs and UI mockups of semantically aware discussion tools to argue the case for this element of next generation LEs