3 resultados para virus cell interaction

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic Myeloid Leukaemia (CML) is a myeloproliferative disorder characterised by increased proliferation of haematopoietic stem cells. CML results following generation of the chimeric protein Bcr-Abl, a constitutively active tyrosine kinase which induces oncogenesis in part by promoting increased cell survival and proliferation. Since the development of Bcr-Abl-specific tyrosine kinase inhibitors (TKIs) there has been a substantial improvement in the clinical treatment of CML. Unfortunately, residual disease and the development of TKI resistance has become an ever growing concern, resulting in the need for a greater understanding of the disease in order to develop new treatment strategies. Interestingly, constitutive expression of the Bcr-Abl in CML is known to produce elevated levels of Reactive Oxygen Species (ROS) which are known to influence a variety of cellular processes. Previous studies have demonstrated that NADPH oxidase (Nox) activity contributes to intracellular-ROS levels in Bcr-Abl-positive cells, enhancing survival signalling. The objective of this study was to elucidate how Nox protein activity was influenced downstream of Bcr-Abl while examining how Nox-derived ROS influenced CML disease phenotype to identify the potential in targeting these proteins to improve CML treatment. These studies demonstrated that inhibition of Bcr-Abl signalling, led to a significant reduction in ROS levels which was concurrent with the GSK-3dependent, post-translational down-regulation of the small membrane-bound protein p22phox, an essential component of the Nox complex. siRNA knockdown of p22phox identified it to have a significant role in cellular proliferation and cell viability, demonstrating the importance of Nox protein activity in CML disease phenotype. Furthermore, removal of p22phox was demonstrated to make cells significantly more susceptible to Bcr-Abl-specific TKI treatment, while pharmacological silencing of Nox activity in combination with TKIs was demonstrated to produce substantial, synergistic increases in cell death through augmentation of apoptosis, demonstrating the therapeutic potential of targeting Nox proteins in combination with Bcr-Abl inhibition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vaccinia virus, the prototype member of the orthopoxviruses, is the largest and the most complex virus known. After replication of its genome and expression of the viral proteins, vaccinia undergoes a complicated assembly process which produces two distinct infectious forms. The first of these, the intracellular mature virus (IMV), develops from the immature virion (IV) after packaging of the genome and cleavage of the core proteins. During the transition of the IV to the IMV, a new core structure develops in the centre of the virion, concomitantly with the appearance of spike-like structures which extend between this core and the surrounding membranes of the IMV. I describe the characterization of p39 (gene A4L) which is hypothesized to be one component of these spikes. p39 is a core protein, but has strong associations with the membranes surrounding the IMV, possibly due to an interaction with p21 (A17L). Due to its location between the core and the membranes of the IMV, p39 is ideally situated to act as a matrix-like linker protein and may play a role in the formation of the core during the transition of the IV to the IMV. The IMV is subsequently wrapped by a membrane cisterna derived from the trans Golgi network, to form the intracellular enveloped virus (IEV). I show that the IEV can co-opt the actin cytoskeleton of the host cell in order to induce the formation of actin tails which extend from one side of the virion. These actin tails propel the virus particle, both intra- and intercellularly, at speeds of up to 2.8µm/min. On reaching the plasma membrane, the virus particles project out from the cell surface at the tip of virally induced microvilli. The outer membrane of the IEV is thought to fuse with the plasma membrane at the tip of these projections, thus exposing the second infectious form of vaccinia. This is thought to be the means by which the cell-associated enveloped virus is presented to neighbouring cells, thereby facilitating the direct cell-to-cell spread of virus particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.