2 resultados para virtual work
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
PRBMs (pseudo-rigid-body models) have been becoming important engineering technologies/methods in the field of compliant mechanisms to simplify the design and analysis through the use of the knowledge body of rigid-body mechanisms coupling with springs. This article addresses the PRBMs of spatial multi-beam modules for planar motion, which are composed of three or more symmetrical wire/slender beams parallel to each other where the planar twisting DOF (degree of freedom) is assumed to be very small for specific applications/loading conditions. Simplified PRBMs are firstly proposed through replacing each beam in spatial multi-beam module with a rigid-body link plus two identical spherical joints at its two ends. The characteristics factor, bending stiffness and twisting stiffness for the spherical joint are determined. Load-displacement equations are then derived for a class of spatial multi-beam modules and general spatial multi-beam modules using the virtual work principle and kinematic relationships. Finally, nonlinear FEA (finite element analysis) is employed with comparisons with the PRBMs. The present PRBMs have shown the ability to predict the primary nonlinear constraint characteristics such as load-stiffening effect, cross-axis coupling in the two primary translational directions and buckling load.
Resumo:
We consider the task of collaborative recommendation of photo-taking locations. We use datasets of geotagged photos. We map their locations to a location grid using a geohashing algorithm, resulting in a user x location implicit feedback matrix. Our improvements relative to previous work are twofold. First, we create virtual ratings by spreading users' preferences to neighbouring grid locations. This makes the assumption that users have some preference for locations close to the ones in which they take their photos. These virtual ratings help overcome the discrete nature of the geohashing. Second, we normalize the implicit frequency-based ratings to a 1-5 scale using a method that has been found to be useful in music recommendation algorithms. We demonstrate the advantages of our approach with new experiments that show large increases in hit rate and related metrics.