4 resultados para vertically vibrated beds
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Nanostructured materials are central to the evolution of future electronics and information technologies. Ferroelectrics have already been established as a dominant branch in the electronics sector because of their diverse application range such as ferroelectric memories, ferroelectric tunnel junctions, etc. The on-going dimensional downscaling of materials to allow packing of increased numbers of components onto integrated circuits provides the momentum for the evolution of nanostructured ferroelectric materials and devices. Nanoscaling of ferroelectric materials can result in a modification of their functionality, such as phase transition temperature or Curie temperature (TC), domain dynamics, dielectric constant, coercive field, spontaneous polarisation and piezoelectric response. Furthermore, nanoscaling can be used to form high density arrays of monodomain ferroelectric nanostructures, which is desirable for the miniaturisation of memory devices. This thesis details the use of various types of nanostructuring approaches to fabricate arrays of ferroelectric nanostructures, particularly non-oxide based systems. The introductory chapter reviews some exemplary research breakthroughs in the synthesis, characterisation and applications of nanoscale ferroelectric materials over the last decade, with priority given to novel synthetic strategies. Chapter 2 provides an overview of the experimental methods and characterisation tools used to produce and probe the properties of nanostructured antimony sulphide (Sb2S3), antimony sulpho iodide (SbSI) and lead titanate zirconate (PZT). In particular, Chapter 2 details the general principles of piezoresponse microscopy (PFM). Chapter 3 highlights the fabrication of arrays of Sb2S3 nanowires with variable diameters using newly developed solventless template-based approach. A detailed account of domain imaging and polarisation switching of these nanowire arrays is also provided. Chapter 4 details the preparation of vertically aligned arrays of SbSI nanorods and nanowires using a surface-roughness assisted vapour-phase deposition method. The qualitative and quantitative nanoscale ferroelectric properties of these nanostructures are also discussed. Chapter 5 highlights the fabrication of highly ordered arrays of PZT nanodots using block copolymer self-assembled templates and their ferroelectric characterisation using PFM. Chapter 6 summarises the conclusions drawn from the results reported in chapters 3, 4 and 5 and the future work.
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
Leachate may be defined as any liquid percolating through deposited waste and emitted from or contained within a landfill. If leachate migrates from a site it may pose a severe threat to the surrounding environment. Increasingly stringent environmental legislation both at European level and national level (Republic of Ireland) regarding the operation of landfill sites, control of associated emissions, as well as requirements for restoration and aftercare management (up to 30 years) has prompted research for this project into the design and development of a low cost, low maintenance, low technology trial system to treat landfill leachate at Kinsale Road Landfill Site, located on the outskirts of Cork city. A trial leachate treatment plant was constructed consisting of 14 separate treatment units (10 open top cylindrical cells [Ø 1.8 m x 2.0 high] and four reed beds [5.0m x 5.0m x 1.0m]) incorporating various alternative natural treatment processes including reed beds (vertical flow [VF] and horizontal flow [HF]), grass treatment planes, compost units, timber chip units, compost-timber chip units, stratified sand filters and willow treatment plots. High treatment efficiencies were achieved in units operating in sequence containing compost and timber chip media, vertical flow reed beds and grass treatment planes. Pollutant load removal rates of 99% for NH4, 84% for BOD5, 46% for COD, 63% for suspended solids, 94% for iron and 98% for manganese were recorded in the final effluent of successfully operated sequences at irrigation rates of 945 l/m2/day in the cylindrical cells and 96 l/m2/day in the VF reed beds and grass treatment planes. Almost total pathogen removal (E. coli) occurred in the final effluent of the same sequence. Denitrification rates of 37% were achieved for a limited period. A draft, up-scaled leachate treatment plant is presented, based on treatment performance of the trial plant.
Resumo:
The parasite Bonamia ostreae has decimated Ostrea edulis stocks throughout Europe. The complete life cycle and means of transmission of the parasite remains unknown. The methods used to diagnose B. ostreae were examined to determine sensitivity and reproducibility. Two methods, with fixed protocols, should be used for the accurate detection of infection within a sample. A 13-month study of two stocks of O. edulis with varying periods of exposure to B. ostreae, was undertaken to determine if varying lengths of exposure would translate into observations of differing susceptibility. Oyster stocks can maintain themselves over extended periods of time in B. ostreae endemic areas. To identify a well performing spat stock, which could be used to repopulate beds within the region, hatchery bred spat from three stocks found in the North sea were placed on a B. ostreae infected bed and screened for growth, mortality and prevalence of infection. Local environmental factors may influence oyster performance, with local stocks better adapted to these conditions. Sediment and macroinvertebrate species were screened to investigate mechanisms by which B. ostreae may be maintaining itself on oyster beds. Mytilus edulis was positive, indicating that B. ostreae may use incidental carriers as a method of maintaining itself. The ability of oyster larvae to pick up infection from the surrounding environment was investigated by collecting larvae from brooding oysters from different areas. Larvae may acquire the pathogen from the water column during the process of filter feeding by the brooding adult, even when the parents themselves are uninfected. A study was undertaken to elucidate the activity of the parasite during the initial stage of infection, when it cannot be detected within the host. A naïve stock screened negative for infection throughout the trial, using heart imprints and PCR yet B. ostreae was detected by in-situ hybridisation.