4 resultados para university-industry linkages

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central research question that this thesis addresses is whether there is a significant gap between fishery stakeholder values and the principles and policy goals implicit in an Ecosystem Approach to Fisheries Management (EAFM). The implications of such a gap for fisheries governance are explored. Furthermore an assessment is made of what may be practically achievable in the implementation of an EAFM in fisheries in general and in a case study fishery in particular. The research was mainly focused on a particular case study, the Celtic Sea Herring fishery and its management committee, the Celtic Sea Herring Management Advisory Committee (CSHMAC). The Celtic Sea Herring fishery exhibits many aspects of an EAFM and the fish stock has successfully recovered to healthy levels in the past 5 years. However there are increasing levels of governance related conflict within the fishery which threaten the future sustainability of the stock. Previous research on EAFM governance has tended to focus either on higher levels of EAFM governance or on individual behaviour but very little research has attempted to link the two spheres or explore the relationship between them. Two main themes within this study aimed to address this gap. The first was what role governance could play in facilitating EAFM implementation. The second theme concerned the degree of convergence between high-level EAFM goals and stakeholder values. The first method applied was governance benchmarking to analyse systemic risks to EAFM implementation. This found that there are no real EU or national level policies which provide stakeholders or managers with clear targets for EAFM implementation. The second method applied was the use of cognitive mapping to explore stakeholders understandings of the main ecological, economic and institutional driving forces in the Celtic Sea Herring fishery. The main finding from this was that a long-term outlook can and has been incentivised through a combination of policy drivers and participatory management. However the fundamental principle of EAFM, accounting for ecosystem linkages rather than target stocks was not reflected in stakeholders cognitive maps. This was confirmed in a prioritisation of stakeholders management priorities using Analytic Hierarchy Process which found that the overriding concern is for protection of target stock status but that wider ecosystem health was not a priority for most management participants. The conclusion reached is that moving to sustainable fisheries may be a more complex process than envisioned in much of the literature and may consist of two phases. The first phase is a transition to a long-term but still target stock focused approach. This achievable transition is mainly a strategic change, which can be incentivised by policies and supported by stakeholders. In the Celtic Sea Herring fishery, and an increasing number of global and European fisheries, such transitions have contributed to successful stock recoveries. The second phase however, implementation of an ecosystem approach, may present a greater challenge in terms of governability, as this research highlights some fundamental conflicts between stakeholder perceptions and values and those inherent in an EAFM. This phase may involve the setting aside of fish for non-valued ecosystem elements and will require either a pronounced mind-set and value change or some strong top-down policy incentives in order to succeed. Fisheries governance frameworks will need to carefully explore the most effective balance between such endogenous and exogenous solutions. This finding of low prioritisation of wider ecosystem elements has implications for rights based management within an ecosystem approach, regardless of whether those rights are individual or collective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioluminescence is the production of light by living organisms as a result of a number of enzyme catalysed reactions caused by enzymes termed luciferases. The lux genes responsible for the emission of light can be cloned from one bioluminescent microorganism into one that is not bioluminescent. The light emitted can be monitored and quantified and will provide information on the metabolic activity, quantity and location of cells in a particular environment, in real-time. The primary aim of this thesis was to investigate and identify several food industry related applications of lux-tagged microorganisms. The first aim was to monitor a lux-tagged Cronobacter sakazakii in reconstituted infant milk formula, in realtime. The second aim was to investigate a bioluminescent-based early warning system for starter culture disruption by bacteriophages and antibiotic residues. The third of this thesis was to examine the use of a bioluminescent-based assay to test the activity of bioengineered Nisin derivatives M21V and S29A against foodborne pathogens in laboratory media and selected foods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal spoilage is the most common type of microbial spoilage in food leading to significant economical and health problems throughout the world. Fermentation by lactic acid bacteria (LAB) is one of the oldest and most economical methods of producing and preserving food. Thus, LAB can be seen as an interesting tool in the development of novel bio-preservatives for food industry. The overall objective of this study was to demonstrate, that LAB can be used as a natural way to improve the shelf-life and safety of a wide range of food products. In the first part of the thesis, 116 LAB isolates were screened for their antifungal activity against four Aspergillus and Penicillium spp. commonly found in food. Approximately 83% of them showed antifungal activity, but only 1% showed a broad range antifungal activity against all tested fungi. The second approach was to apply LAB antifungal strains in production of food products with extended shelf-life. L. reuteri R29 strain was identified as having strong antifungal activity in vitro, as well as in sourdough bread against Aspergillus niger, Fusarium culmorum and Penicillium expansum. The ability of the strain to produce bread of good quality was also determined using standard baking tests. Another strain, L. amylovorus DSM19280, was also identified as having strong antifungal activity in vitro and in vivo. The strain was used as an adjunct culture in a Cheddar cheese model system and demonstrated the inhibition of P. expansum. Significantly, its presence had no detectable negative impact on cheese quality as determined by analysis of moisture, salt, pH, and primary and secondary proteolysis. L. brevis PS1 a further strain identified during the screening as very antifungal, showed activity in vitro against common Fusarium spp. and was used in the production of a novel functional wortbased alcohol-free beverage. Challenge tests performed with F. culmorum confirmed the effectiveness of the antifungal strain in vivo. The shelf-life of the beverage was extended significantly when compared to not inoculated wort sample. A range of antifungal compounds were identified for the 4 LAB strains, namely L. reuteri ee1p, L. reuteri R29, L. brevis PS1 and L. amylovorous DSM20531. The identification of the compounds was based on liquid chromatography interfaced to the mass spectrometer and PDA detector

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.