2 resultados para typical program
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
The phosphorescence excitation spectra of two thiones, 4-H-1-xanthione (XT) and 4-H-1-pyrane-4-thione (PT), cooled in a supersonic jet were investigated. The vibronic lineshape of the T1z origin of PT measured by cavity ring-down spectroscopy is considered and the excited state rotational constants are calculated. For XT the 3A2(nπ* ) → X1A1 phosphorescence excitation spectrum was investigated in the region 14900-17600 cm-1. The structure observed is shown to be due to the T1← S0 absorption and an assignment in terms of the vibronic structure of the band is proposed. A previous assignment of the S1 ← S0 origin is considered and the transition involved is shown to be most probably due to the absorption of a vibronic tiplet state T1z,v7. An alternative but tentative assignment of the S1,0 ←S0,0 transition is suggested. In the case of PT the phosphorescence excitation spectrum was investigated in the region of the 1A2(ππ*) ← X1A1 absorption band between 27300 and 28800 cm-1. The spectrum exhibits complex features which are typical for the strong vibronic coupling case of two adjacent electronic states. The observed intermediate level structure was attributed to the coupling with a lower lying dark electronic state 1B1(nπ*2), whose origin was estimated to be ~ 825 - 1025 cm-1 below the origin of 1A2(ππ*)0. Consequences of the vibronic coupling on the decay dynamics of 1A2(ππ*) as well as tentative assignments of vibronic transitions 1A2(ππ*)v ← X1A1 are also discussed. In the T1z ← S0 cavity ring-down absorption spectrum of PT, the vibronic lineshape of the T1z origin is analysed. As the T1z line is separated from the T1x,1y lines by a large zero-field splitting it is possible to use an Asyrot-like program to calculate the vibrational-rotational parameters determining the lineshape. It is shown that PT is non-planar in the first excited triplet state and the lineshape is composed of a mixture of A-type and C-type bandshapes. The non-planarity of PT is discussed.