1 resultado para two-Gaussian mixture model
em CORA - Cork Open Research Archive - University College Cork - Ireland
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Aston University Research Archive (55)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (103)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (42)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (93)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (8)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (44)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (10)
- DigitalCommons@The Texas Medical Center (13)
- Diposit Digital de la UB - Universidade de Barcelona (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (6)
- Earth Simulator Research Results Repository (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (5)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (8)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (9)
- Nottingham eTheses (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (16)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (38)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (80)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (31)
- Universidade Complutense de Madrid (5)
- Universidade do Minho (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (37)
- Université de Montréal (1)
- Université de Montréal, Canada (18)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (13)
- University of Queensland eSpace - Australia (89)
- University of Washington (7)
- WestminsterResearch - UK (1)
Resumo:
Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time.