2 resultados para turtle shell
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Little is known about the biology of the softshell clam in Europe, despite it being identified as a potential species to culture for food in the future. Monthly samples of the softshell clam, Mya arenaria, were collected intertidally from Co. Wexford, Ireland, over a period of sixteen months. The mean weight of sampled individuals was 7 4 ± 4 . 9 g and mean length was 8 . 2 ± 0 . 2 cm. Histological examination revealed a female-to-male ratio of 1 : 1.15. In 2010, M. arenaria at this site matured over the summer months, with both sexes either ripe or spawning by August. A single spawning event was recorded in 2010, completed by November. Two unusually cold winters, followed by a warmer-than-average spring, appear to have affected M. arenaria gametogenesis in this area, potentially affecting the time of spawning, fertilisation success, and recruitment of this species. No hermaphrodites were observed in the samples collected, nor were any pathogens observed. Timing of development and spawning is compared with the coasts of eastern North America and with other European coasts.
Resumo:
Diamondback terrapins (Malaclemys terrapin) are native to the remote oceanic islands of Bermuda and presently inhabit only four small brackish water ponds on a private golf course. The life history of this species is poorly understood on Bermuda and so the aim of this study was to fill these knowledge gaps, to compare the results with what is known from other areas in the North American range, and to inform the development of a local management plan. The results of a mark-recapture census revealed that ca. 100 individuals ≥81 mm straight carapace length live on Bermuda, of which nearly half (48.5%) were considered sexually mature. The population is dominated by females (sex ratio 2.9:1) and annual recruitment over the three year period was found to be extremely low (approximately two terrapins). Female diamondback terrapins in Bermuda nest almost exclusively within a limited number of sand bunkers on the golf course. Nesting commenced in late March or early April and ended in late August. Peak oviposition was observed in May and June. Clutch size averaged 5.1 eggs (range 0-10; SD 2.4) and the incubation period averaged 61.8 days (range 49-83; SD 10.5). Delayed emergence was documented, with 43.8% of the hatchlings remaining in their natal nests over the winter months. The mean annual hatching success rate was determined to be 19% (range 17.6-21; SD 1.9). Radio-telemetry was used to investigate the movements and survivorship of postemergent hatchling diamondback terrapins. The results indicated that mangrove swamps and grass-dominated marshes adjacent to the ponds are important developmental habitats for hatchlings. Yellow-crowned night herons (Nyctanassa violacea) were found to be significant predators of small terrapins during spring emergence. Small aquatic gastropods comprised 66.7% of the faecal samples analysed from the Bermudian population. Scavenged fish and vertebrate animal remains, terrestrial arthropods, polychaete worms and bivalves were consumed in lesser amounts. Sediment from the pond environment was found in 74% of the faecal samples analysed and is believed to have been incidentally ingested while foraging for the small benthic gastropods. Eco-toxicological analyses of the pond sediment, prey and terrapin eggs showed that the Bermudian diamondback terrapins live and feed in wetland habitats characterised by chronic, multifactorial contamination; principally total petroleum hydrocarbons, polycyclic aromatic hydrocarbons and a variety of heavy metals. This study found that some of those contaminants are accumulating in the gastropod prey as well as being transferred to terrapin eggs. This may be reducing the incidence of successful embryonic development for this species in Bermuda and may likely contribute to the observed low hatching rates. These collective findings indicate that the Bermudian population is very vulnerable to local extirpation.