4 resultados para trabecular and cortical adaptations

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited expressive vocabulary skills in young children are considered to be the first warning signs of a potential Specific Language Impairment (SLI) (Ellis & Thal, 2008). In bilingual language learning environments, the expressive vocabulary size in each of the child’s developing languages is usually smaller compared to the number of words produced by monolingual peers (e.g. De Houwer, 2009). Nonetheless, evidence shows children’s total productive lexicon size across both languages to be comparable to monolingual peers’ vocabularies (e.g. Pearson et al., 1993; Pearson & Fernandez, 1994). Since there is limited knowledge as to which level of bilingual vocabulary size should be considered as a risk factor for SLI, the effects of bilingualism and language-learning difficulties on early lexical production are often confounded. The compilation of profiles for early vocabulary production in children exposed to more than one language, and their comparison across language pairs, should enable more accurate identification of vocabulary delays that signal a risk for SLI in bilingual populations. These considerations prompted the design of a methodology for assessing early expressive vocabulary in children exposed to more than one language, which is described in the present chapter. The implementation of this methodological framework is then outlined by presenting the design of a study that measured the productive lexicons of children aged 24-36 months who were exposed to different language pairs, namely Maltese and English, Irish and English, Polish and English, French and Portuguese, Turkish and German as well as English and Hebrew. These studies were designed and coordinated in COST Action IS0804 Working Group 3 (WG3) and will be described in detail in a series of subsequent publications. Expressive vocabulary size was measured through parental report, by employing the vocabulary checklist of the MacArthur-Bates Communicative Development Inventory: Words and Sentences (CDI: WS) (Fenson et al., 1993, 2007) and its adaptations to the participants’ languages. Here we describe the novelty of the study’s methodological design, which lies in its attempt to harmonize the use of vocabulary checklist adaptations, together with parental questionnaires addressing language exposure and developmental history, across participant groups characterized by different language exposure variables. This chapter outlines the various methodological considerations that paved the way for meaningful cross-linguistic comparison of the participants’ expressive lexicon sizes. In so doing, it hopes to provide a template for and encourage further research directed at establishing a threshold for SLI risk in children exposed to more than one language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is commonly associated with brain dysfunction, but the underlying mechanisms remain unclear, although mitochondrial dysfunction and microvascular abnormalities have been implicated. We therefore assessed whether cerebral mitochondrial dysfunction during systemic endotoxemia in mice increased mitochondrial sensitivity to a further bioenergetic insult (hyoxemia), and whether hypothermia could improve outcome. Mice (C57bl/6) were injected intraperitoneally with lipopolysaccharide (LPS) (5 mg/kg; n = 85) or saline (0.01 ml/g; n = 47). Six, 24 and 48 h later, we used confocal imaging in vivo to assess cerebral mitochondrial redox potential and cortical oxygenation in response to changes in inspired oxygen. The fraction of inspired oxygen (FiO2) at which the cortical redox potential changed was compared between groups. In a subset of animals, spontaneous hypothermia was maintained or controlled hypothermia induced during imaging. Decreasing FiO2 resulted in a more reduced cerebral redox state around veins, but preserved oxidation around arteries. This pattern appeared at a higher FiO2 in LPS-injected animals, suggesting an increased sensitivity of cortical mitochondria to hypoxemia. This increased sensitivity was accompanied by a decrease in cortical oxygenation, but was attenuated by hypothermia. These results suggest that systemic endotoxemia influences cortical oxygenation and mitochondrial function, and that therapeutic hypothermia can be protective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.