2 resultados para timber
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The study of medieval carpentry is probably one of the most neglected aspects of archaeological research in Ireland. The principal difficulty is the nature of the evidence, in that timber, unless the conditions are right, rarely leaves a trace above ground. The problem is further exacerbated by the fact that not a single medieval timber-framed building has survived in Ireland. Nevertheless, in recent years, in addition to the medieval roof of Dunsoghley, which up to quite recently was thought to be the only surviving roof structure in Ireland, a further eight medieval roof structures have been identified. Furthermore, an extensive corpus of early medieval mills, with evidence for advanced Roman carpentry techniques, has been excavated, while evidence for Viking houses, on what is probably the largest extant Viking settlement in Europe, have also been recovered. Although post and wattle structures dominate the archaeological record of the Viking period, nevertheless, it will be shown that the Roman tradition of carpentry, evidenced in the early medieval mills from the early seventh century, continued in use in the wider Gaelic community. And it is one of the pivotal points of this study, that with the takeover of Dublin by the Gaelic Irish in the late tenth century, this Roman carpentry tradition was gradually assimilated into the carpentry tradition of the Viking towns, which were now largely inhabited by a mixed population of Hiberno-Norse. Evidence for this Gaelic influence can be seen not only in the gradual replacement of the Viking post and wattle house by timber houses with load-bearing walls, but more importantly by the evidence for waterfront structures founded on baseplates with mortise and tenoned uprights on the pre-Norman waterfront in Cork. Furthermore, it will be shown, that the carpentry techniques used to build the Wood Quay revetments, shortly after the Anglo-Norman conquest in AD 1170, supports this contention.
Resumo:
Leachate may be defined as any liquid percolating through deposited waste and emitted from or contained within a landfill. If leachate migrates from a site it may pose a severe threat to the surrounding environment. Increasingly stringent environmental legislation both at European level and national level (Republic of Ireland) regarding the operation of landfill sites, control of associated emissions, as well as requirements for restoration and aftercare management (up to 30 years) has prompted research for this project into the design and development of a low cost, low maintenance, low technology trial system to treat landfill leachate at Kinsale Road Landfill Site, located on the outskirts of Cork city. A trial leachate treatment plant was constructed consisting of 14 separate treatment units (10 open top cylindrical cells [Ø 1.8 m x 2.0 high] and four reed beds [5.0m x 5.0m x 1.0m]) incorporating various alternative natural treatment processes including reed beds (vertical flow [VF] and horizontal flow [HF]), grass treatment planes, compost units, timber chip units, compost-timber chip units, stratified sand filters and willow treatment plots. High treatment efficiencies were achieved in units operating in sequence containing compost and timber chip media, vertical flow reed beds and grass treatment planes. Pollutant load removal rates of 99% for NH4, 84% for BOD5, 46% for COD, 63% for suspended solids, 94% for iron and 98% for manganese were recorded in the final effluent of successfully operated sequences at irrigation rates of 945 l/m2/day in the cylindrical cells and 96 l/m2/day in the VF reed beds and grass treatment planes. Almost total pathogen removal (E. coli) occurred in the final effluent of the same sequence. Denitrification rates of 37% were achieved for a limited period. A draft, up-scaled leachate treatment plant is presented, based on treatment performance of the trial plant.