2 resultados para the requirements of writing and form
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The mechanisms governing fetal development follow a tightly regulated pattern of progression such that interference at any one particular stage is likely to have consequences for all other stages of development in the physiological system that has been affected thereafter. These disturbances can take the form of many different events but two of the most common and widely implicated in causing detrimental effects to the developing fetus are maternal immune activation (MIA) and maternal stress. MIA has been shown to cause an increase in circulating proinflammatory cytokines in both the maternal and fetal circulation. This increase in proinflammatory mediators in the fetus is thought to occur by fetal production rather than through exchange between the maternal-fetal interface. In the case of maternal stress it is increased levels of stress related hormones such as cortisol/corticosterone which is thought to elicit the detrimental effects on fetal development. In the case of both maternal infection and stress the timing and nature of the insult generally dictates the severity and type of effects seen in affected offspring. We investigated the effect of a proinflammatory environment on neural precursor cells of which exposure resulted in a significant decrease in the normal rate of proliferation of NPCs in culture but did not have any effect on cell survival. These effects were seen to be age dependent. Using a restraint stress model we investigated the effects of prenatal stress on the development of a number of different physiological systems in the same cohort of animals. PNS animals exhibited a number of aberrant changes in cardiovascular function with altered responses to stress and hypertension, modifications in respiratory responses to hypercapnic and hypoxic challenges and discrepancies in gastrointestinal innervation. Taken together these findings suggest that both maternal infection and maternal stress are detrimental to the normal development of the fetus.
Resumo:
Human milk is the ideal nutrition source for healthy infants during the first six months of life and a detailed characterisation of the composition of milk from mothers that deliver prematurely (<37 weeks gestation), and of how human milk changes during lactation, would benefit our understanding of the nutritional requirements of premature infants. Individual milk samples from mothers delivering prematurely and at term were collected. The human milk metabolome, established by (NMR) spectroscopy, was influenced by gestational and lactation age. Metabolite profiling identified that levels of valine, leucine, betaine, and creatinine were increased in colostrum from term mothers compared with mature milk, while those of glutamate, caprylate, and caprate were increased in mature term milk compared with colostrum. Levels of oligosaccharides, citrate, and creatinine were increased in pre-term colostrum, while those of caprylate, caprate, valine, leucine, glutamate, and pantothenate increased with time postpartum. There were differences between pre-term and full-term milk in the levels of carnitine, caprylate, caprate, pantothenate, urea, lactose, oligosaccharides, citrate, phosphocholine, choline, and formate. These findings suggest that the metabolome of pre-term milk changes within 5-7 weeks postpartum to resemble that of term milk, independent of time of gestation at pre-mature delivery.