4 resultados para swd: Ubiquitous Computing
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Wireless Inertial Measurement Units (WIMUs) combine motion sensing, processing & communications functionsin a single device. Data gathered using these sensors has the potential to be converted into high quality motion data. By outfitting a subject with multiple WIMUs full motion data can begathered. With a potential cost of ownership several orders of magnitude less than traditional camera based motion capture, WIMU systems have potential to be crucially important in supplementing or replacing traditional motion capture and opening up entirely new application areas and potential markets particularly in the rehabilitative, sports & at-home healthcarespaces. Currently WIMUs are underutilized in these areas. A major barrier to adoption is perceived complexity. Sample rates, sensor types & dynamic sensor ranges may need to be adjusted on multiple axes for each device depending on the scenario. As such we present an advanced WIMU in conjunction with a Smart WIMU system to simplify this aspect with 3 usage modes: Manual, Intelligent and Autonomous. Attendees will be able to compare the 3 different modes and see the effects of good andbad set-ups on the quality of data gathered in real time.
Resumo:
Existing work in Computer Science and Electronic Engineering demonstrates that Digital Signal Processing techniques can effectively identify the presence of stress in the speech signal. These techniques use datasets containing real or actual stress samples i.e. real-life stress such as 911 calls and so on. Studies that use simulated or laboratory-induced stress have been less successful and inconsistent. Pervasive, ubiquitous computing is increasingly moving towards voice-activated and voice-controlled systems and devices. Speech recognition and speaker identification algorithms will have to improve and take emotional speech into account. Modelling the influence of stress on speech and voice is of interest to researchers from many different disciplines including security, telecommunications, psychology, speech science, forensics and Human Computer Interaction (HCI). The aim of this work is to assess the impact of moderate stress on the speech signal. In order to do this, a dataset of laboratory-induced stress is required. While attempting to build this dataset it became apparent that reliably inducing measurable stress in a controlled environment, when speech is a requirement, is a challenging task. This work focuses on the use of a variety of stressors to elicit a stress response during tasks that involve speech content. Biosignal analysis (commercial Brain Computer Interfaces, eye tracking and skin resistance) is used to verify and quantify the stress response, if any. This thesis explains the basis of the author’s hypotheses on the elicitation of affectively-toned speech and presents the results of several studies carried out throughout the PhD research period. These results show that the elicitation of stress, particularly the induction of affectively-toned speech, is not a simple matter and that many modulating factors influence the stress response process. A model is proposed to reflect the author’s hypothesis on the emotional response pathways relating to the elicitation of stress with a required speech content. Finally the author provides guidelines and recommendations for future research on speech under stress. Further research paths are identified and a roadmap for future research in this area is defined.
Resumo:
Constraint programming has emerged as a successful paradigm for modelling combinatorial problems arising from practical situations. In many of those situations, we are not provided with an immutable set of constraints. Instead, a user will modify his requirements, in an interactive fashion, until he is satisfied with a solution. Examples of such applications include, amongst others, model-based diagnosis, expert systems, product configurators. The system he interacts with must be able to assist him by showing the consequences of his requirements. Explanations are the ideal tool for providing this assistance. However, existing notions of explanations fail to provide sufficient information. We define new forms of explanations that aim to be more informative. Even if explanation generation is a very hard task, in the applications we consider, we must manage to provide a satisfactory level of interactivity and, therefore, we cannot afford long computational times. We introduce the concept of representative sets of relaxations, a compact set of relaxations that shows the user at least one way to satisfy each of his requirements and at least one way to relax them, and present an algorithm that efficiently computes such sets. We introduce the concept of most soluble relaxations, maximising the number of products they allow. We present algorithms to compute such relaxations in times compatible with interactivity, achieving this by indifferently making use of different types of compiled representations. We propose to generalise the concept of prime implicates to constraint problems with the concept of domain consequences, and suggest to generate them as a compilation strategy. This sets a new approach in compilation, and allows to address explanation-related queries in an efficient way. We define ordered automata to compactly represent large sets of domain consequences, in an orthogonal way from existing compilation techniques that represent large sets of solutions.
Resumo:
The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems.