6 resultados para sulfated polysaccharides

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ulva rigida (UR) and Palmaria palmata (PP) were included in farmed Atlantic salmon diets at levels of 0-15% for 19 and 16 weeks, respectively. Quality and shelf-life parameters of salmon fillets stored in modified atmosphere packs (MAP) (60% N2 : 40% CO2) at 4ºC were compared to controls fed astaxanthin. Salmon fillets were enhanced with a yellow/orange colour. Proximate composition, pH and lipid oxidation were unaffected by dietary UR and PP. Salmon fed 5% UR and 5-15% PP did not influence sensory descriptors (texture, odour, oxidation flavour and overall acceptability) of cooked salmon fillets. Pig diets were supplemented with commercial wet- and spray-dried macroalgal (Laminaria digitata) polysaccharide extracts containing laminarin (L, 500 mg/kg feed) and fucoidan (F, 420 mg/kg feed) (L/F-WS, L/F-SD) for 3 weeks and quality and shelf-life parameters of fresh pork steaks (longissimus thoracis et lumborum) stored in MAP (80% O2 : 20% CO2) were examined. Level (450 or 900 mg L and F/kg feed) and duration (3 or 6 weeks) of dietary L/F-WS and mechanisms of antioxidant activities in pork were investigated. L/F-WS reduced (p < 0.05) lipid oxidation and lowered levels of saturated fatty acids in fresh pork after 3 weeks feeding. L/F-SD was added directly to mince pork (0.01 - 0.5%) and quality and shelf-life parameters of fresh pork patties stored in MAP (80% O2 : 20% CO2) were assessed. Direct addition of the L/F-SD increased levels of lipid oxidation and decreased surface redness (a* values) of fresh pork patties. Lipid oxidation was reduced in cooked patties due to the formation of Maillard reaction products. Cooked pork patties containing L/F-SD were subjected to an in vitro digestion and a cellular transwell model to confirm bioaccessibility and uptake of antioxidant compounds. In mechanistic studies, fucoidan demonstrated antiand pro-oxidant activities on muscle lipids and oxymyoglobin, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seaweeds contain a range of antioxidant compounds such as polyphenols, carotenoids, sulphated polysaccharides and vitamins and have the potential to be used as ingredients in neutraceuticals. The antioxidant activity of crude 60% methanol extracts prepared from five Irish seaweeds, Ascophyllum nodosum, Laminaria hyperborea, Pelvetia canaliculata, Fucus vesiculosus and Fucus serratus were examined using in-vitro assays and a cell model system to determine the antioxidant activity of the extracts and their ability to protect against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status in the human adenocarcinoma, Caco-2 cell line. To optimise the extraction of antioxidant compounds from seaweeds, an accelerated solvent extraction (ASE®) was used in combination with food grade solvents. The antioxidant activity of these extracts against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status was also assessed. Extracts that exhibited the highest antioxidant activity, A. nodosum (100% water and 80% ethanol extracts) and F. vesiculosus (60% ethanol extract) were selected as ingredients for incorporation into fluid milk and yogurt at concentrations of 0.25% and 0.5%. The addition of the seaweed extracts to milk and yogurt did not affect the pH or shelf-life properties of the products. Seaweed addition did however significantly influence the colour properties of the milk and yogurt. Yellowness values were significantly higher in yogurts containing F. vesiculosus at both concentrations and A. nodosum (80% ethanol) at the 0.5% concentration. In milk, the F. vesiculosus (60% ethanol) and A. nodosum (80% ethanol) at both the 0.25% and the 0.5% concentrations had higher greenness and yellowness values than the milk containing A. nodosum (100% water). Sensory analysis revealed that appearance and flavour governed the overall acceptability of yogurts with the control yogurt, and yogurts containing A. nodosum (100% water) were the most preferred samples by panellists. However, in the milk trial the perception of a fishy taste was the determining factor in the negative perception of milk. The unsupplemented control and the milk containing A. nodosum (100% water) at a concentration of 0.5% were the most overall accepted milk samples by the sensory panellists. The antioxidant activity of the extracts in milk and yogurt remained stable during storage as determined by the in-vitro assays. Seaweed supplemented milk and yogurt were also subjected to an in-vitro digestion procedure which mimics the human digestive system. The milk and yogurt samples and their digestates were added to Caco-2 cells to investigate their antioxidant potential however neither the undigested or digested samples protected against H2O2-induced DNA damage in Caco-2 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactic acid bacteria expolysaccharides (LAB-EPS), in particular those formed from sucrose have the potential to improve food and beverage rheology and enhance their sensory properties potentially replacing or reducing expensive hydrocolloids currently used as improvers in food and beverage industries. Addition of sucrose not only enables EPS formation but also affects organic acid formation, thus influencing the sensory properties of the resulting food/beverage products. The first part of the study the organoleptic modulation of barley malt derived wort fermented using in situ produced bacterial polysaccharides has been investigated. Weisella cibaria MG1 was capable to produce exopolysaccharides during sucrosesupplemented barley malt derived wort fermentation. Even though the strain dominated the (sucrose-supplemented) wort fermentation, it was found to produce EPS (14.4 g l-1) with lower efficiency than in SucMRS (34.6 g l-1). Higher maltose concentration in wort led to the increased formation of oligosaccharide (OS) at the expense of EPS. Additionally, small amounts of organic acids were formed and ethanol remained below 0.5% (v/v). W. cibaria MG1 fermented worts supplemented with 5 or 10% sucrose displayed a shear-thinning behaviour indicating the formation of polymers. This report showed how novel and nutritious LAB fermented wort-base beverage with prospects for further advancements can be formulated using tailored microbial cultures. In the next step, the impact of exopolysaccharide-producing Weissella cibaria MG1 on the ability to improve rheological properties of fermented plant-based milk substitute plant based soy and quinoa grain was evaluated. W. cibaria MG1 grew well in soy milk, exceeding a cell count of log 8 cfu/g within 6 h of fermentation. The presence of W. cibaria MG1 led to a decrease in gelation and fermentation time. EPS isolated from soy yoghurts supplemented with sucrose were higher in molecular weight (1.1 x 108 g/mol vs 6.6 x 107 g/mol), and resulted in reduced gel stiffness (190 ± 2.89 Pa vs 244 ± 15.9 Pa). Soy yoghurts showed typical biopolymer gels structure and the network structure changed to larger pores and less cross-linking in the presence of sucrose and increasing molecular weight of the EPS. In situ investigation of Weissella cibaria MG1 producing EPS on quinoa-based milk was performed. The production of quinoa milk, starting from wholemeal quinoa flour, was optimised to maximise EPS production. On doing that, enzymatic destructuration of protein and carbohydrate components of quinoa milk was successfully achieved applying alpha-amylase and proteases treatments. Fermented wholemeal quinoa milk using Weissella cibaria MG1 showed high viable cell counts (>109 cfu/mL), a pH of 5.16, and significantly higher water holding capacity (WHC, 100 %), viscosity (> 0. 5 Pa s) and exopolysaccharide (EPS) amount (40 mg/L) than the chemically acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Direct observation of microstructure in fermented quinoa milk indicated that the network structures of EPS-protein could improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed favorable technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk. The last part of the study investigate the ex-situ LAB-EPS (dextran) application compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacteria constitute a specific group of commensal bacteria, typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. In the current study, we investigated glycosulfatase activity in a bacterial nursling stool isolate, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support growth of B. breve UCC2003, while, N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate and N-acetylgalactosamine-6-sulfate, did not support appreciable growth. Using a combination of transcriptomic and functional genomic approaches, a gene cluster, designated ats2, was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a ROK-family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant and host-derived carbohydrates which allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of this species' ability to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant and adult gut.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.