3 resultados para stereoselective allylation
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The research described in this thesis is concerned with the synthesis and stereoselective transformations of 4,5-dihydro-3(2H)-furanones and their 3-hydroxy derivatives. In Chapter 1, a review of synthetic routes to 3-hydroxytetrahydrofurans is presented. This incorporates the wide range of applications for these types of compounds. Preparative routes to and stereoselective transformations of the furanones investigated in this study are discussed in Chapter 2. The bulk of the work centers on stereoselective carbonyl group reductions to generate the 3-hydroxytetrahydrofuran derivatives in racemic form followed by kinetic resolution via lipase mediated esterification, resulting in enantioenriched 3-acetoxy and 3-hydroxytetrahydrofuran derivatives. In many cases, these processes proceed in a highly enantioselective manner. The influence of the lipase species and concentration of enzyme employed on the yield and stereochemical outcome of the reactions is examined in detail. Access to the complementary series of furanone and hydroxytetrahydrofuran derivatives by oxidation or reduction of the enantioenriched compounds was achieved through conventional synthetic methods. Chapter 2 also contains details of a novel synthetic route to a range of 2,3,5-trisubstituted furans from α-hydroxyenones and 4,5-dihydro-3(2H)-furanones. The mechanistic rationale for these transformations and the migratory aptitude of alkyl groups towards the formation of these furans is discussed in detail. Finally, Chapter 2 outlines the synthesis of a series of diarylcyclopentenones that were synthesised as part of our investigations. Chapter 3 contains a description of the synthetic procedures and biotransformations carried out together with key analytical and spectroscopic properties of the compounds studied and where appropriate, their analysis using chiral HPLC analysis.
Resumo:
The primary focus of this thesis was the development of a novel chiral tether that could be used to control axial chirality around a newly formed aryl-aryl bond, and the extension of this methodology to the model synthesis of gomisin M1. In chapter 1, a review detailing the use of chiral tethers in the synthesis of atropisomers is discussed. The use of a variety of chiral molecules including 1,2-diols, 1,3-diols and other diol-based tethers, as well as amine-based and miscellaneous tethers are detailed. In chapter 2, the rationale behind the design of our novel molecular tethers, along with the subsequent synthesis of three chiral 1,3-diol-based tethers, is outlined. The method by which the enantiopurity of these diols was determined is also reviewed. This chapter also includes the attempted Mitsunobu and intramolecular couplings in the model synthesis of BINOL. Chapter 3 discusses the synthesis of suitable aryl halide substrates, and their employment in the attempted tether-controlled asymmetric model synthesis of gomisin M1. A comprehensive investigation into the attempted intramolecular biaryl coupling of these tethered substrates is also included. The non-stereoselective model synthesis of gomisin M1 is outlined in chapter 4. The installation of the desired biaryl linkage and the subsequent attempted intramolecular McMurry couplings are discussed. The impact of different protecting groups in the molecule on the intramolecular McMurry reaction is also outlined. Chapter 5 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
Muscarine was identified as an active principle of the poisonous mushroom Amanita muscaria over 170 years ago and has been identified as an agonist of acetylcholine. The synthesis of all stereoisomers of muscarine have been accomplished at this stage by chemical methods and the biological activity of these compounds tested. A number of synthetic routes to enantiomerically pure muscarine and its analogues have been published. In this work, we are focussed on the use of a novel biotransformation strategy to access these compounds. Asymmetric synthesis involves targeting a synthetic pathway leading to one enantiomer of a compound and biocatalysis is one strategy used in asymmetric synthesis. Chapter 1 consists of a review of the relevant literature pertaining to the synthesis and stereoselective transformations of 3-hydroxytetrahydrofuranss. A review of synthetic routes to these compounds is presented, with a particular focus on routes to the natural product muscarine and its analogues. Chapter 2 discusses the preparative routes to the 3-hydroxytetrahydrofurans via 3(2H)- furanones. Steps amongst which include Rh(II) mediate cyclisation and kinetic resolution via baker’s yeast mediated carbonyl reduction, resulting in enantioenriched 3- hydroxytetrahydrofuran derivatives. Finally, application of this methodology to the preparation of all four enantiomers of an analogue of desmethylmuscarine and the synthesis of epimuscarine is described. Chapter 3 consists of a detailed experimental section outlining the synthetic procedures employed.