2 resultados para spatial variations in sulfie generation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased plasmin and plasminogen levels and elevated somatic cell counts (SCC) and polymorphonuclear leucocyte levels (PMN) were evident in late lactation milk. Compositional changes in these milks were associated with increased SCC. The quality of late lactation milks was related to nutritional status of herds, with milks from herds on a high plane of nutrition having composition and clotting properties similar to, or superior to, early-mid lactation milks. Nutritionally-deficient cows had elevated numbers of polymorphonuclear leucocytes (PMNs) in their milk, elevated plasmin levels and increased overall proteolytic activity. The dominant effect of plasmin on proteolysis in milks of low SCC was established. When present in elevated numbers, somatic cells and PMNs in particular had a more significant influence on the proteolysis of both raw and pasteurised milks than plasmin. PMN protease action on the caseins showed proteolysis products of two specific enzymes, cathepsin B and elastase, which were also shown in high SCC milk. Crude extracts of somatic cells had a high specificity on αs1-casein. Cheeses made from late lactation milks had increased breakdown of αs1-casein, suggestive of the action of somatic cell proteinases, which may be linked to textural defects in cheese. Late lactation cheeses also showed decreased production of small peptides and amino acids, the reason for which is unknown. Plasmin, which is elevated in activity in late lactation milk, accelerated the ripening of Gouda-type cheese, but was not associated with defects of texture or flavour. The retention of somatic cell enzymes in cheese curd was confirmed, and a potential role in production of bitter peptides identified. Cheeses made from milks containing high levels of PMNs had accelerated αs1-casein breakdown relative to cheeses made from low PMN milk of the same total SCC, consistent with the demonstrated action of PMN proteinases. The two types of cheese were determined significantly different by blind triangle testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the comparative structural-vibrational study of nanostructures of nanourchins, nanotubes, and nanorods of vanadium oxide. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. Both Raman scattering and infrared spectroscopies showed that the structure of nanourchins, nanotubes, and nanorods of vanadium oxide nanocomposite are strongly dependent on the valency of the vanadium, its associated interactions with the organic surfactant template, and on the packing mechanism and arrangement of the surfactant between vanadate layers. Accurate assignment of the vibrational modes to the V-O coordinations has allowed their comparative classification and relation to atomic layer structure. Although all structures are formed from the same precursor, differences in vanadate conformations due to the hydrothermal treatment and surfactant type result in variable degrees of crystalline order in the final nanostructure. The nanotube-containing nanourchins contain vanadate layers in the nanotubes that are in a distorted γ- V5+ conformation, whereas the the nanorods, by comparison, show evidence for V5+ and V4+ species-containing ordered VOx lamina.