2 resultados para soil physical and chemical properties
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The work presented in this dissertation focused on the development and characterisation of novel cocrystals that incorporated the thioamide, amide and imide functional groups. A particular emphasis was placed on the characterisation of these cocrystals by single crystal X-ray diffraction methods. In Chapter One a summary of the intermolecular interactions utilised in this work and a short review of the solid state and multicomponent systems is provided. A brief introduction to the ways in which different multicomponent systems can be distinguished, crystal engineering strategies and a number of cocrystal applications highlights the importance the understanding of intermolecular interactions can have on the physical and chemical properties of crystalline materials. Chapter Two is the first Results and Discussion chapter and includes an introduction that is specific to the chapter. The main body of this work focuses on the primary aromatic thioamide functional group and its propensity to cocrystallise with a number of sulfoxides. Unlike the amide functional group, thioamides are not commonly employed in cocrystallisation studies. This chapter presents the first direct comparison between the cocrystallisation abilities of these two functional groups and the intermolecular hydrogen bonding interactions present in the cocrystal structures are examined. Chapter Three describes the crystal landscape of a short series of secondary aromatic amides and their analogous thioamides. Building on the results obtained in Chapter Two, a cocrystal screen of the secondary thioamides with the sulfoxide functional group was carried out in order to determine the effect removing a hydrogen bond had on the supramolecular synthons observed in the cocrystals. These secondary thioamides are also utilised in Chapter Four, which examines their halogen bonding capabilities with two organoiodine coformers: 1,2- and 1,4-diiodotetrafluorobenzene. Chapter Five explores the cocrystallisation abilities of three related cyclic imides as coformers for cocrystallisation with a range of commonly used coformers. Chapter Six is an overall conclusions chapter that highlights the findings of the results presented in Chapters Two to Five. Chapter Seven details the instrument and experimental data for the compounds and cocrystals discussed in the Results and Discussion Chapters. The accompanying CD contains all of the crystallographic data in .cif format for the novel single crystal structures characterised in this work.
Resumo:
The present study aimed to investigate interactions of components in the high solids systems during storage. The systems included (i) lactose–maltodextrin (MD) with various dextrose equivalents at different mixing ratios, (ii) whey protein isolate (WPI)–oil [olive oil (OO) or sunflower oil (SO)] at 75:25 ratio, and (iii) WPI–oil– {glucose (G)–fructose (F) 1:1 syrup [70% (w/w) total solids]} at a component ratio of 45:15:40. Crystallization of lactose was delayed and increasingly inhibited with increasing MD contents and higher DE values (small molecular size or low molecular weight), although all systems showed similar glass transition temperatures at each aw. The water sorption isotherms of non-crystalline lactose and lactose–MD (0.11 to 0.76 aw) could be derived from the sum of sorbed water contents of individual amorphous components. The GAB equation was fitted to data of all non-crystalline systems. The protein–oil and protein–oil–sugar materials showed maximum protein oxidation and disulfide bonding at 2 weeks of storage at 20 and 40°C. The WPI–OO showed denaturation and preaggregation of proteins during storage at both temperatures. The presence of G–F in WPI–oil increased Tonset and Tpeak of protein aggregation, and oxidative damage of the protein during storage, especially in systems with a higher level of unsaturated fatty acids. Lipid oxidation and glycation products in the systems containing sugar promoted oxidation of proteins, increased changes in protein conformation and aggregation of proteins, and resulted in insolubility of solids or increased hydrophobicity concomitantly with hardening of structure, covalent crosslinking of proteins, and formation of stable polymerized solids, especially after storage at 40°C. We found protein hydration transitions preceding denaturation transitions in all high protein systems and also the glass transition of confined water in protein systems using dynamic mechanical analysis.