2 resultados para software engineering: metrics
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
An aim of proactive risk management strategies is the timely identification of safety related risks. One way to achieve this is by deploying early warning systems. Early warning systems aim to provide useful information on the presence of potential threats to the system, the level of vulnerability of a system, or both of these, in a timely manner. This information can then be used to take proactive safety measures. The United Nation’s has recommended that any early warning system need to have four essential elements, which are the risk knowledge element, a monitoring and warning service, dissemination and communication and a response capability. This research deals with the risk knowledge element of an early warning system. The risk knowledge element of an early warning system contains models of possible accident scenarios. These accident scenarios are created by using hazard analysis techniques, which are categorised as traditional and contemporary. The assumption in traditional hazard analysis techniques is that accidents are occurred due to a sequence of events, whereas, the assumption of contemporary hazard analysis techniques is that safety is an emergent property of complex systems. The problem is that there is no availability of a software editor which can be used by analysts to create models of accident scenarios based on contemporary hazard analysis techniques and generate computer code that represent the models at the same time. This research aims to enhance the process of generating computer code based on graphical models that associate early warning signs and causal factors to a hazard, based on contemporary hazard analyses techniques. For this purpose, the thesis investigates the use of Domain Specific Modeling (DSM) technologies. The contributions of this thesis is the design and development of a set of three graphical Domain Specific Modeling languages (DSML)s, that when combined together, provide all of the necessary constructs that will enable safety experts and practitioners to conduct hazard and early warning analysis based on a contemporary hazard analysis approach. The languages represent those elements and relations necessary to define accident scenarios and their associated early warning signs. The three DSMLs were incorporated in to a prototype software editor that enables safety scientists and practitioners to create and edit hazard and early warning analysis models in a usable manner and as a result to generate executable code automatically. This research proves that the DSM technologies can be used to develop a set of three DSMLs which can allow user to conduct hazard and early warning analysis in more usable manner. Furthermore, the three DSMLs and their dedicated editor, which are presented in this thesis, may provide a significant enhancement to the process of creating the risk knowledge element of computer based early warning systems.
Resumo:
Motivated by accurate average-case analysis, MOdular Quantitative Analysis (MOQA) is developed at the Centre for Efficiency Oriented Languages (CEOL). In essence, MOQA allows the programmer to determine the average running time of a broad class of programmes directly from the code in a (semi-)automated way. The MOQA approach has the property of randomness preservation which means that applying any operation to a random structure, results in an output isomorphic to one or more random structures, which is key to systematic timing. Based on original MOQA research, we discuss the design and implementation of a new domain specific scripting language based on randomness preserving operations and random structures. It is designed to facilitate compositional timing by systematically tracking the distributions of inputs and outputs. The notion of a labelled partial order (LPO) is the basic data type in the language. The programmer uses built-in MOQA operations together with restricted control flow statements to design MOQA programs. This MOQA language is formally specified both syntactically and semantically in this thesis. A practical language interpreter implementation is provided and discussed. By analysing new algorithms and data restructuring operations, we demonstrate the wide applicability of the MOQA approach. Also we extend MOQA theory to a number of other domains besides average-case analysis. We show the strong connection between MOQA and parallel computing, reversible computing and data entropy analysis.