3 resultados para self-healing materials

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and information technologies. Ferroelectrics have already been established as a dominant branch in the electronics sector because of their diverse application range such as ferroelectric memories, ferroelectric tunnel junctions, etc. The on-going dimensional downscaling of materials to allow packing of increased numbers of components onto integrated circuits provides the momentum for the evolution of nanostructured ferroelectric materials and devices. Nanoscaling of ferroelectric materials can result in a modification of their functionality, such as phase transition temperature or Curie temperature (TC), domain dynamics, dielectric constant, coercive field, spontaneous polarisation and piezoelectric response. Furthermore, nanoscaling can be used to form high density arrays of monodomain ferroelectric nanostructures, which is desirable for the miniaturisation of memory devices. This thesis details the use of various types of nanostructuring approaches to fabricate arrays of ferroelectric nanostructures, particularly non-oxide based systems. The introductory chapter reviews some exemplary research breakthroughs in the synthesis, characterisation and applications of nanoscale ferroelectric materials over the last decade, with priority given to novel synthetic strategies. Chapter 2 provides an overview of the experimental methods and characterisation tools used to produce and probe the properties of nanostructured antimony sulphide (Sb2S3), antimony sulpho iodide (SbSI) and lead titanate zirconate (PZT). In particular, Chapter 2 details the general principles of piezoresponse microscopy (PFM). Chapter 3 highlights the fabrication of arrays of Sb2S3 nanowires with variable diameters using newly developed solventless template-based approach. A detailed account of domain imaging and polarisation switching of these nanowire arrays is also provided. Chapter 4 details the preparation of vertically aligned arrays of SbSI nanorods and nanowires using a surface-roughness assisted vapour-phase deposition method. The qualitative and quantitative nanoscale ferroelectric properties of these nanostructures are also discussed. Chapter 5 highlights the fabrication of highly ordered arrays of PZT nanodots using block copolymer self-assembled templates and their ferroelectric characterisation using PFM. Chapter 6 summarises the conclusions drawn from the results reported in chapters 3, 4 and 5 and the future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents several routes towards achieving artificial opal templates by colloidal self-assembly of polystyrene (PS) or poly(methyl methacrylate) (PMMA) spheres and the use of these template for the fabrication of V2O5 inverse opals as cathode materials for lithium ion battery applications. First, through the manipulation of different experimental factors, several methods of affecting or directing opal growth towards realizing different structures, improving order and/or achieving faster formation on a variety of substrates are presented. The addition of the surfactant sodium dodecyl sulphate (SDS) at a concentration above the critical micelle concentration for SDS to a 5 wt% solution of PMMA spheres before dip-coating is presented as a method of achieving ordered 2D PhC monolayers on hydrophobic Au-coated silicon substrates at fast and slow rates of withdrawal. The effect that the degree of hydrophilicity of glass substrates has on the ordering of PMMA spheres is next investigated for a slow rate of withdrawal under noise agitation. Heating of the colloidal solution is also presented as a means of affecting order and thickness of opal deposits formed using fast rate dip coating. E-beam patterned substrates are shown as a means of altering the thermodynamically favoured FCC ordering of polystyrene spheres (PS) when dip coated at slow rate. Facile routes toward the synthesis of ordered V2O5 inverse opals are presented with direct infiltration of polymer sphere templates using liquid precursor. The use of different opal templates, both 2D and 3D partially ordered templates, is compared and the composition and arrangement of the subsequent IO structures post infiltration and calcination for various procedures is characterised. V2O5 IOs are also synthesised by electrodeposition from an aqueous VOSO4 solution at constant voltage. Electrochemical characterisation of these structures as cathode material for Li-ion batteries is assessed in a half cell arrangement for samples deposited on stainless steel foil substrates. Improved rate capabilities are demonstrated for these materials over bulk V2O5, with the improvement attributed to the shorter Li ion diffusion distances and increased electrolyte infiltration provided by the IO structure.