4 resultados para self-consistent calculation
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The substitution of a small fraction x of nitrogen atoms, for the group V elements in conventional III-V semiconductors such as GaAs and GaSb strongly perturbs the conduction band of the host semiconductor. In this thesis we investigate the effects of nitrogen states on the band dispersion, carrier scattering and mobility of dilute nitride alloys. In the supercell model we solve the single particle Hamiltonian for a very large supercell containing randomly placed nitrogen. This model predicts a gap in the density of states of GaNxAs1−x, where this gap is filled in the Green’s function model. Therefore we develop a self-consistent Green’s function (SCGF) approach, which provides excellent agreement with supercell calculations and reveals a gap in the DOS, in contrast with the results of previous non-self-consistent Green’s function calculations. However, including the distribution of N states destroys this gap, as seen in experiment. We then examine the high field transport of carriers by solving the steadystate Boltzmann transport equation and find that it is necessary to include the full distribution of N levels in order to account for the small, low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Overall the results account well for a wide range of experimental data. We also investigate the band structure, scattering and mobility of carriers by finding the poles of the SCGF, which gives lower carrier mobility for GaNxAs1−x, compared to those already calculated, in better agreement with experiments. The calculated optical absorption spectra for InyGa1−yNxAs1−x and GaNxSb1−x using the SCGF agree well with the experimental data, confirming the validity of this approach to study the band structure of these materials.
Resumo:
We report a mechanism for pore growth and propagation based on a three-step charge transfer model. The study is supported by electron microscopy analysis of highly doped n-InP samples anodised in aqueous KOH. The model and experimental data are used to explain propagation of pores of characteristic diameter preferentially along the <111>A directions. We also show evidence for deviation of pore growth from the <111>A directions and explain why such deviations should occur. The model is self-consistent and predicts how carrier concentration affects the internal dimensions of the porous structures.
Resumo:
Background Self-harm places an individual at increased risk of future self-harm and suicide, and indicates distress and maladaptive coping. Those who present to hospital with self-cutting form a significant minority of self-harm patients who are at increased risk of prospective repetition of self-harm and suicide compared with those presenting with intentional overdose. In addition to increased risk, there is emerging evidence of demographic, psychological, clinical, and social differences between those presenting with self-cutting and those presenting with overdose. Aim and Key Objectives The aim of the current doctoral work was to examine in detail the association between presenting with self-cutting and risk of prospective repetition. The objectives were: to identify evidence-based risk factors for repetition of self-harm among those presenting to emergency departments with self-harm; to compare demographic and presentation characteristics and prospective repetition across presentations of self-cutting only, self-cutting plus intentional overdose, and intentional overdose only; to compare prospective repetition and other characteristics within self-cutting presentations based on the type of treatment received; to compare self-cutting and intentional overdose patients on psychological risk and protective factors for repetition; and to examine the lived experience of engaging in repeated overdose and self-cutting. Methods The current doctoral work used a mixed-methods approach and is comprised of one systematic review and four empirical studies. The empirical studies were two registry-based prospective studies of Irish hospital presentations of self-harm, one prospective structured interview study, and one qualitative study using Interpretative Phenomenological Analysis. Results The systematic review identified several consistent and emerging risk factors for repetition of self-harm, compared to which self-cutting had a medium-sized effect. The registry studies demonstrated that the involvement of self-cutting, particularly less medically severe selfcutting, confers an increased risk of 1-month and 12-month repetition among Irish index selfharm presentations. The structured psychological study detected higher hopelessness and lower non-reactivity to inner experience among those presenting with self-cutting, and higher depression among those who repeated self-harm. Repeaters had lower baseline levels of protective psychological factors than non-repeaters and continued to have higher depression and hopelessness at follow-up. Finally, the qualitative study indicated that self-harm is a purposeful action taken in response to an overwhelming situation and is evaluated afterwards in terms of personal and social effects. Chosen method of self-harm seemed to be influenced by the desired outcome of the self-harm act, capability, accessibility and previous experience. Conclusion Despite limitations in terms of recruitment rates, the work presented in this thesis is innovative in examining the issue of the association between self-cutting and repetition from multiple perspectives. No one factor can reliably predict all repetition but self-cutting represents one consistent and easily detected risk factor for repetition. Those who present with self-cutting exhibit significant differences on demographic, clinical, and psychological variables compared with those presenting with intentional overdose, and seem to exhibit a more vulnerable profile. However, those who present with self-cutting do not form a discrete or homogenous group, and self-harm methods and levels of suicidal intent are liable to fluctuate over time.
Resumo:
Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.