4 resultados para seasonality and endurance breed

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaculture is a fast-growing industry contributing to global food security and sustainable aquaculture, which may reduce pressures on capture fisheries. The overall objective of this thesis was to look at the immunostimulatory effects of different aspects of aquaculture on the host response of the edible sea urchin, Paracentrotus lividus, which are a prized delicacy (roe) in many Asian and Mediterranean countries. In Chapter 1, the importance of understanding the biology, ecology, and physiology of P. lividus, as well as the current status in the culture of this organism for mass production and introducing the thesis objectives for following chapters is discussed. As the research commenced, the difficulties of identifying individuals for repeat sampling became clear; therefore, Chapter 2 was a tagging experiment that indicated PIT tagging was a successful way of identifying individual sea urchins over time with a high tag retention rate. However, it was also found that repeat sampling via syringe to measure host response of an individual caused stress which masked results and thus animals would be sampled and sacrificed going forward. Additionally, from personal observations and discussion with peers, it was suggested to look at the effect that diet has on sea urchin immune function and the parameters I measured which led to Chapter 3. In this chapter, both Laminaria digitata and Mytilus edulis were shown to influence measured immune parameters of differential cell counts, nitric oxide production, and lysozyme activity. Therefore, trials commencing after Trial 5 in Chapter 4, were modified to include starvation in order to remove any effect of diet. Another important aspect of culturing any organism is the study of their immune function and its response to several immunostimulatory agents (Chapter 4). Zymosan A was shown to be an effective immunostimulatory agent in P. lividus. Further work on handled/stored animals (Chapter 5) showed Zymosan A reduced the measured levels of some immune parameters measured relative to the control, which may reduce the amount of stress in the animals. In Chapter 6, animals were infected with Vibrio anguillarum and, although V. anguillarum, impacted immune parameters of P. lividus, it did not cause mortality as predicted. Lastly, throughout this thesis work, it was noted that the immune parameters measured produced different values at different times of the year (Chapter 7); therefore, using collated baseline (control) data, results were compiled to observe seasonal effects. It was determined that both seasonality and sourcing sites influenced immune parameter measurements taken at different times throughout the year. In conclusion, this thesis work fits into the framework of development of aquaculture practices that affect immune function of the host and future research focusing on the edible sea urchin, P. lividus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.