8 resultados para scalable
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet, exposing challenges in coping with heterogeneous device capabilities and varying network throughput. When we couple this rise in streaming with the growing number of portable devices (smart phones, tablets, laptops) we see an ever-increasing demand for high-definition videos online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide us with graceful changes in video quality, all while respecting our viewing satisfaction. In this context the use of well-known scalable media streaming techniques, commonly known as scalable coding, is an attractive solution and the focus of this thesis. In this thesis we investigate the transmission of existing scalable video models over a lossy network and determine how the variation in viewable quality is affected by packet loss. This work focuses on leveraging the benefits of scalable media, while reducing the effects of data loss on achievable video quality. The overall approach is focused on the strategic packetisation of the underlying scalable video and how to best utilise error resiliency to maximise viewable quality. In particular, we examine the manner in which scalable video is packetised for transmission over lossy networks and propose new techniques that reduce the impact of packet loss on scalable video by selectively choosing how to packetise the data and which data to transmit. We also exploit redundancy techniques, such as error resiliency, to enhance the stream quality by ensuring a smooth play-out with fewer changes in achievable video quality. The contributions of this thesis are in the creation of new segmentation and encapsulation techniques which increase the viewable quality of existing scalable models by fragmenting and re-allocating the video sub-streams based on user requirements, available bandwidth and variations in loss rates. We offer new packetisation techniques which reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP) and by providing equality of data in every packet transmitted per GOP. These provide novel mechanisms for packetizing and error resiliency, as well as providing new applications for existing techniques such as Interleaving and Priority Encoded Transmission. We also introduce three new scalable coding models, which offer a balance between transmission cost and the consistency of viewable quality.
Resumo:
Video compression techniques enable adaptive media streaming over heterogeneous links to end-devices. Scalable Video Coding (SVC) and Multiple Description Coding (MDC) represent well-known techniques for video compression with distinct characteristics in terms of bandwidth efficiency and resiliency to packet loss. In this paper, we present Scalable Description Coding (SDC), a technique to compromise the tradeoff between bandwidth efficiency and error resiliency without sacrificing user-perceived quality. Additionally, we propose a scheme that combines network coding and SDC to further improve the error resiliency. SDC yields upwards of 25% bandwidth savings over MDC. Additionally, our scheme features higher quality for longer durations even at high packet loss rates.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.
Resumo:
Bandwidth constriction and datagram loss are prominent issues that affect the perceived quality of streaming video over lossy networks, such as wireless. The use of layered video coding seems attractive as a means to alleviate these issues, but its adoption has been held back in large part by the inherent priority assigned to the critical lower layers and the consequences for quality that result from their loss. The proposed use of forward error correction (FEC) as a solution only further burdens the bandwidth availability and can negate the perceived benefits of increased stream quality. In this paper, we propose Adaptive Layer Distribution (ALD) as a novel scalable media delivery technique that optimises the tradeoff between the streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data is spread amongst all datagrams thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the scalable video, while providing increased resilience to the highest quality layers. Our experimental results show that ALD improves the perceived quality and also reduces the bandwidth demand by up to 36% in comparison to the well-known Multiple Description Coding (MDC) technique.
Resumo:
Simulation of pedestrian evacuations of smart buildings in emergency is a powerful tool for building analysis, dynamic evacuation planning and real-time response to the evolving state of evacuations. Macroscopic pedestrian models are low-complexity models that are and well suited to algorithmic analysis and planning, but are quite abstract. Microscopic simulation models allow for a high level of simulation detail but can be computationally intensive. By combining micro- and macro- models we can use each to overcome the shortcomings of the other and enable new capability and applications for pedestrian evacuation simulation that would not be possible with either alone. We develop the EvacSim multi-agent pedestrian simulator and procedurally generate macroscopic flow graph models of building space, integrating micro- and macroscopic approaches to simulation of the same emergency space. By “coupling” flow graph parameters to microscopic simulation results, the graph model captures some of the higher detail and fidelity of the complex microscopic simulation model. The coupled flow graph is used for analysis and prediction of the movement of pedestrians in the microscopic simulation, and investigate the performance of dynamic evacuation planning in simulated emergencies using a variety of strategies for allocation of macroscopic evacuation routes to microscopic pedestrian agents. The predictive capability of the coupled flow graph is exploited for the decomposition of microscopic simulation space into multiple future states in a scalable manner. By simulating multiple future states of the emergency in short time frames, this enables sensing strategy based on simulation scenario pattern matching which we show to achieve fast scenario matching, enabling rich, real-time feedback in emergencies in buildings with meagre sensing capabilities.
Resumo:
Drug delivery systems influence the various processes of release, absorption, distribution and elimination of drug. Conventional delivery methods administer drug through the mouth, the skin, transmucosal areas, inhalation or injection. However, one of the current challenges is the lack of effective and targeted oral drug administration. Development of sophisticated strategies, such as micro- and nanotechnology that can integrate the design and synthesis of drug delivery systems in a one-step, scalable process is fundamental in advancing the limitations of conventional processing techniques. Thus, the objective of this thesis is to evaluate novel microencapsulation technologies in the production of size-specific and target-specific drug-loaded particles. The first part of this thesis describes the utility of PDMS and silicon microfluidic flow focusing devices (MFFDs) to produce PLGA-based microparticles. The formation of uniform droplets was dependent on the surface of PDMS remaining hydrophilic. However, the durability of PDMS was limited to no more than 1 hour before wetting of the microchannel walls with dichloromethane and subsequent swelling occurred. Critically, silicon MFFDs revealed very good solvent compatibility and was sufficiently robust to withstand elevated fluid flow rates. Silicon MFFDs facilitated experiments to run over days with continuous use and re-use of the device with a narrower microparticle size distribution, relative to conventional production techniques. The second part of this thesis demonstrates an alternative microencapsulation technology, SmPill® minispheres, to target CsA delivery to the colon. Characterisation of CsA release in vitro and in vivo was performed. By modulating the ethylcellulose:pectin coating thickness, release of CsA in-vivo was more effectively controlled compared to current commercial CsA formulations and demonstrated a linear in-vitro in-vivo relationship. Coated minispheres were shown to limit CsA release in the upper small intestine and enhance localised CsA delivery to the colon.
Resumo:
The mobile cloud computing model promises to address the resource limitations of mobile devices, but effectively implementing this model is difficult. Previous work on mobile cloud computing has required the user to have a continuous, high-quality connection to the cloud infrastructure. This is undesirable and possibly infeasible, as the energy required on the mobile device to maintain a connection, and transfer sizeable amounts of data is large; the bandwidth tends to be quite variable, and low on cellular networks. The cloud deployment itself needs to efficiently allocate scalable resources to the user as well. In this paper, we formulate the best practices for efficiently managing the resources required for the mobile cloud model, namely energy, bandwidth and cloud computing resources. These practices can be realised with our mobile cloud middleware project, featuring the Cloud Personal Assistant (CPA). We compare this with the other approaches in the area, to highlight the importance of minimising the usage of these resources, and therefore ensure successful adoption of the model by end users. Based on results from experiments performed with mobile devices, we develop a no-overhead decision model for task and data offloading to the CPA of a user, which provides efficient management of mobile cloud resources.
Resumo:
This thesis investigated well-ordered block copolymer (BCP) thin film characteristics and their use for nanoscale pattern formation using a series of polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-blockpolydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) systems of various molecular weights. BCP thin films, which act as an ‘on-chip’ etch mask and material templates, are highly promising self-assembling process for future scalable nanolithography. Unlike conventional BCP processing methods, the work in this thesis demonstrates that well-ordered patterns can be achieved in a few seconds compared to several hours by use of a non-conventional microwave assisted technique. As a result, well-ordered BCP nanoscale structures can be developed in industry appropriate periods facilitating their incorporation into current technologies. An optimised and controlled plasma dry etch process was used for successful pattern transfer to the underlying silicon substrate. Long range ordered BCP templates were further modified by selective metal inclusion technique to form a hard mask template towards fabrication of high aspect ratio nanopillars and nanowires. The work described here is centred on how these templates might be used to generate function at substrate surfaces. Herein we describe a number of innovations which might allow their successful uptake in a number of applications.