2 resultados para safety barriers
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The multiquantum barrier (MQB), proposed by Iga et al in 1986, has been shown by several researchers to be an effective structure for improving the operating characteristics of laser diodes. These improvements include a reduction in the laser threshold current and increased characteristic temperatures. The operation of the MQB has been described as providing an increased barrier to electron overflow by reflecting high energy electrons trying to escape from the active region of the laser.This is achieved in a manner analogous to a Bragg reflector in optics. This thesis presents an investigation of the effectiveness of the MQB as an electron reflector. Numerical models have been developed for calculating the electron reflection due to MQB. Novel optical and electrical characterisation techniques have been used to try to measure an increase in barrier height due to the MQB in AlGaInP.It has been shown that the inclusion of MQB structures in bulk double heterostructure visible laser diodes can halve the threshold current above room temperature and the characteristic temperature of these lasers can be increased by up to 20K.These improvements are shown to occur in visible laser diodes even with the inclusion of theoretically ineffective MQB structures, hence the observed improvement in the characteristics of the laser diodes described above cannot be uniquely attributed to an increased barrier height due to enhance electron reflection. It is proposed here that the MQB improves the performance of laser diodes by proventing the diffusion of zinc into the active region of the laser. It is also proposed that the trapped zinc in the MQB region of the laser diode locally increases the p-type doping bringing the quasi-Fermi level for holes closer to the valence band edge thus increasing the barrier to electron overflow in the conduction band.
Resumo:
A proactive risk management strategy seeks to prevent accidents from taking place and maintain the safety of a system. In this context, the task of identifying and disseminating early warning signs and signals is among the most important. The problem is that warning signs that are present before an accident takes place are often being overlooked and not picked up or identified as warning signs. If these warning signs were responded to, then an accident may be averted. Accidents occuring in the critical domain of a drinking water treatments works can have serious implications for the public health of consumers of the water supplied. Realising and comprehending early warning signs is a major challenge for the domain of systems safety and especially in the domain of a water treatment works. The approaches that are typically used to enhance the realisation, comprehension and dissemination of early warning signs in the water treatment domain in Ireland mainly involves the creation of accident scenarios, the use of monitoring data and procedures for the dissemination of warnings. While all of these approaches are all useful to inform the mental or process models of possible accident scenarios, nevertheless, accidents are still occurring in this domain. Therefore, a new approach to enhance the comprehension of and effective dissemination of early warning signs is required in order to improve safety and proactive risk management strategies. The contributions of this thesis is the provision of a set of attributes associated with the early warning sign concept that provides meaningful data on the early warning signs and allows recipients to better comprehend them. The values of these attributes were customised for application in the water treatment domain. This research proves that early warning signs at a water treatment works received with information on their attributes are comprehended and communicated more effectively and efficiently than the usual pragmatic approach and thereby improves the safety and proactive risk management strategies.