8 resultados para route planning
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In a road network, cyclists are the group exposed to the maximum amount of risk. Route choice of a cyclist is often based on level of expertise, perceived or actual road risks, personal decisions, weather conditions and a number of other factors. Consequently, cycling tends to be the only significant travel mode where optimised route choice is not based on least-path or least-time. This paper presents an Android platform based mobile-app for personalised route planning of cyclists in Dublin. The mobile-app, apart from its immediate advantage to the cyclists, acts as the departure point for a number of research projects and aids in establishing some critical calibration values for the cycling network in Dublin.
Resumo:
In this research we focus on the Tyndall 25mm and 10mm nodes energy-aware topology management to extend sensor network lifespan and optimise node power consumption. The two tiered Tyndall Heterogeneous Automated Wireless Sensors (THAWS) tool is used to quickly create and configure application-specific sensor networks. To this end, we propose to implement a distributed route discovery algorithm and a practical energy-aware reaction model on the 25mm nodes. Triggered by the energy-warning events, the miniaturised Tyndall 10mm data collector nodes adaptively and periodically change their association to 25mm base station nodes, while 25mm nodes also change the inter-connections between themselves, which results in reconfiguration of the 25mm nodes tier topology. The distributed routing protocol uses combined weight functions to balance the sensor network traffic. A system level simulation is used to quantify the benefit of the route management framework when compared to other state of the art approaches in terms of the system power-saving.
Resumo:
Since Wireless Sensor Networks (WSNs) are subject to failures, fault-tolerance becomes an important requirement for many WSN applications. Fault-tolerance can be enabled in different areas of WSN design and operation, including the Medium Access Control (MAC) layer and the initial topology design. To be robust to failures, a MAC protocol must be able to adapt to traffic fluctuations and topology dynamics. We design ER-MAC that can switch from energy-efficient operation in normal monitoring to reliable and fast delivery for emergency monitoring, and vice versa. It also can prioritise high priority packets and guarantee fair packet deliveries from all sensor nodes. Topology design supports fault-tolerance by ensuring that there are alternative acceptable routes to data sinks when failures occur. We provide solutions for four topology planning problems: Additional Relay Placement (ARP), Additional Backup Placement (ABP), Multiple Sink Placement (MSP), and Multiple Sink and Relay Placement (MSRP). Our solutions use a local search technique based on Greedy Randomized Adaptive Search Procedures (GRASP). GRASP-ARP deploys relays for (k,l)-sink-connectivity, where each sensor node must have k vertex-disjoint paths of length ≤ l. To count how many disjoint paths a node has, we propose Counting-Paths. GRASP-ABP deploys fewer relays than GRASP-ARP by focusing only on the most important nodes – those whose failure has the worst effect. To identify such nodes, we define Length-constrained Connectivity and Rerouting Centrality (l-CRC). Greedy-MSP and GRASP-MSP place minimal cost sinks to ensure that each sensor node in the network is double-covered, i.e. has two length-bounded paths to two sinks. Greedy-MSRP and GRASP-MSRP deploy sinks and relays with minimal cost to make the network double-covered and non-critical, i.e. all sensor nodes must have length-bounded alternative paths to sinks when an arbitrary sensor node fails. We then evaluate the fault-tolerance of each topology in data gathering simulations using ER-MAC.
Resumo:
Organizations that leverage lessons learned from their experience in the practice of complex real-world activities are faced with five difficult problems. First, how to represent the learning situation in a recognizable way. Second, how to represent what was actually done in terms of repeatable actions. Third, how to assess performance taking account of the particular circumstances. Fourth, how to abstract lessons learned that are re-usable on future occasions. Fifth, how to determine whether to pursue practice maturity or strategic relevance of activities. Here, organizational learning and performance improvement are investigated in a field study using the Context-based Intelligent Assistant Support (CIAS) approach. A new conceptual framework for practice-based organizational learning and performance improvement is presented that supports researchers and practitioners address the problems evoked and contributes to a practice-based approach to activity management. The novelty of the research lies in the simultaneous study of the different levels involved in the activity. Route selection in light rail infrastructure projects involves practices at both the strategic and operational levels; it is part managerial/political and part engineering. Aspectual comparison of practices represented in Contextual Graphs constitutes a new approach to the selection of Key Performance Indicators (KPIs). This approach is free from causality assumptions and forms the basis of a new approach to practice-based organizational learning and performance improvement. The evolution of practices in contextual graphs is shown to be an objective and measurable expression of organizational learning. This diachronic representation is interpreted using a practice-based organizational learning novelty typology. This dissertation shows how lessons learned when effectively leveraged by an organization lead to practice maturity. The practice maturity level of an activity in combination with an assessment of an activity’s strategic relevance can be used by management to prioritize improvement effort.
Resumo:
Background: The Early Development Instrument (EDI) is a population-level measure of five developmental domains at school-entry age. The overall aim of this thesis was to explore the potential of the EDI as an indicator of early development in Ireland. Methods: A cross-sectional study was conducted in 47 primary schools in 2011 using the EDI and a linked parental questionnaire. EDI (teacher completed) scores were calculated for 1,344 children in their first year of full-time education. Those scoring in the lowest 10% of the sample population in one or more domains were deemed to be 'developmentally vulnerable'. Scores were correlated with contextual data from the parental questionnaire and with indicators of area and school-level deprivation. Rasch analysis was used to determine the validity of the EDI. Results: Over one quarter (27.5%) of all children in the study were developmentally vulnerable. Individual characteristics associated with increased risk of vulnerability were being male; under 5 years old; and having English as a second language. Adjusted for these demographics, low birth weight, poor parent/child interaction and mother’s lower level of education showed the most significant odds ratios for developmental vulnerability. Vulnerability did not follow the area-level deprivation gradient as measured by a composite index of material deprivation. Children considered by the teacher to be in need of assessment also had lower scores, which were not significantly different from those of children with a clinical diagnosis of special needs. all domains showed at least reasonable fit to the Rasch model supporting the validity of the instrument. However, there was a need for further refinement of the instrument in the Irish context. Conclusion: This thesis provides a unique snapshot of early development in Ireland. The EDI and linked parental questionnaires are promising indicators of the extent, distribution and determinants of developmental vulnerability.
Resumo:
Accepted Version
Resumo:
Submission on behalf of UCC to the Government Consultation on the White paper on Irish Aid
Resumo:
A growing number of software development projects successfully exhibit a mix of agile and traditional software development methodologies. Many of these mixed methodologies are organization specific and tailored to a specific project. Our objective in this research-in-progress paper is to develop an artifact that can guide the development of such a mixed methodology. Using control theory, we design a process model that provides theoretical guidance to build a portfolio of controls that can support the development of a mixed methodology for software development. Controls, embedded in methods, provide a generalizable and adaptable framework for project managers to develop their mixed methodology specific to the demands of the project. A research methodology is proposed to test the model. Finally, future directions and contributions are discussed.