3 resultados para refractive index profile
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.
Resumo:
This thesis explores methods for fabrication of nanohole arrays, and their integration into a benchtop system for use as sensors or anti-counterfeit labels. Chapter 1 gives an introduction to plasmonics and more specifically nanohole arrays and how they have potential as label free sensors compared to the current biosensors on the market. Various fabrication methods are explored, including Focused Ion Beam, Electron Beam Lithography, Nanoimprint lithography, Template stripping and Phase Shift Lithography. Focused Ion Beam was chosen to fabricate the nanohole arrays due to its suitability for rapid prototyping and it’s relatively low cost. In chapter 2 the fabrication of nanohole arrays using FIB is described, and the samples characterised. The fabricated nanohole arrays are tested as bulk refractive index sensors, before a bioassay using whole molecule human IgG antibodies and antigen is developed and performed on the senor. In chapter 3 the fabricated sensors are integrated into a custom built system, capable of real time, multiplexed detection of biomolecules. Here, scFv antibodies of two biomolecules relevant to the detection of pancreatic cancer (C1q and C3) are attached to the nanohole arrays, and detection of their complementary proteins is demonstrated both in buffer (10 nM detection of C1q Ag) and human serum. Chapter 4 explores arrays of anisotropic (elliptical) nanoholes and shows how the shape anisotropy induces polarisation sensitive transmission spectra, in both simulations and fabricated arrays. The potential use of such samples as visible and NIR tag for anti-counterfeiting applications is demonstrated. Finally, chapter 5 gives a summary of the work completed and discusses potential future work in this area.
Resumo:
The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.