6 resultados para quench distortion

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avalanche Photodiodes (APDs) have been used in a wide range of low light sensing applications such as DNA sequencing, quantum key distribution, LIDAR and medical imaging. To operate the APDs, control circuits are required to achieve the desired performance characteristics. This thesis presents the work on development of three control circuits including a bias circuit, an active quench and reset circuit and a gain control circuit all of which are used for control and performance enhancement of the APDs. The bias circuit designed is used to bias planar APDs for operation in both linear and Geiger modes. The circuit is based on a dual charge pumps configuration and operates from a 5 V supply. It is capable of providing milliamp load currents for shallow-junction planar APDs that operate up to 40 V. With novel voltage regulators, the bias voltage provided by the circuit can be accurately controlled and easily adjusted by the end user. The circuit is highly integrable and provides an attractive solution for applications requiring a compact integrated APD device. The active quench and reset circuit is designed for APDs that operate in Geiger-mode and are required for photon counting. The circuit enables linear changes in the hold-off time of the Geiger-mode APD (GM-APD) from several nanoseconds to microseconds with a stable setting step of 6.5 ns. This facilitates setting the optimal `afterpulse-free' hold-off time for any GM-APD via user-controlled digital inputs. In addition this circuit doesn’t require an additional monostable or pulse generator to reset the detector, thus simplifying the circuit. Compared to existing solutions, this circuit provides more accurate and simpler control of the hold-off time while maintaining a comparable maximum count-rate of 35.2 Mcounts/s. The third circuit designed is a gain control circuit. This circuit is based on the idea of using two matched APDs to set and stabilize the gain. The circuit can provide high bias voltage for operating the planar APD, precisely set the APD’s gain (with the errors of less than 3%) and compensate for the changes in the temperature to maintain a more stable gain. The circuit operates without the need for external temperature sensing and control electronics thus lowering the system cost and complexity. It also provides a simpler and more compact solution compared to previous designs. The three circuits designed in this project were developed independently of each other and are used for improving different performance characteristics of the APD. Further research on the combination of the three circuits will produce a more compact APD-based solution for a wide range of applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reflective modulators based on the combination of an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) are attractive devices for applications in long reach carrier distributed passive optical networks (PONs) due to the gain provided by the SOA and the high speed and low chirp modulation of the EAM. Integrated R-EAM-SOAs have experimentally shown two unexpected and unintuitive characteristics which are not observed in a single pass transmission SOA: the clamping of the output power of the device around a maximum value and low patterning distortion despite the SOA being in a regime of gain saturation. In this thesis a detailed analysis is carried out using both experimental measurements and modelling in order to understand these phenomena. For the first time it is shown that both the internal loss between SOA and R-EAM and the SOA gain play an integral role in the behaviour of gain saturated R-EAM-SOAs. Internal loss and SOA gain are also optimised for use in a carrier distributed PONs in order to access both the positive effect of output power clamping, and hence upstream dynamic range reduction, combined with low patterning operation of the SOA Reflective concepts are also gaining interest for metro transport networks and short reach, high bit rate, inter-datacentre links. Moving the optical carrier generation away from the transmitter also has potential advantages for these applications as it avoids the need for cooled photonics being placed directly on hot router line-cards. A detailed analysis is carried out in this thesis on a novel colourless reflective duobinary modulator, which would enable wavelength flexibility in a power-efficient reflective metro node.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the use of electromagnetics for both steering and tracking of medical instruments in minimally invasive surgeries. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. Navigation to the peripheral regions of the lung is difficult due to physical dimensions of the bronchi and current methods have low successes rates for accurate diagnosis. Firstly, the potential use of DC magnetic fields for the actuation of catheter devices with permanently magnetised distal attachments is investigated. Catheter models formed from various materials and magnetic tip formations are used to examine the usefulness of relatively low power and compact electromagnets. The force and torque that can be exerted on a small permanent magnet is shown to be extremely limited. Hence, after this initial investigation we turn our attention to electromagnetic tracking, in the development of a novel, low-cost implementation of a GPS-like system for navigating within a patient. A planar magnetic transmitter, formed on a printed circuit board for a low-profile and low cost manufacture, is used to generate a low frequency magnetic field distribution which is detected by a small induction coil sensor. The field transmitter is controlled by a novel closed-loop system that ensures a highly stable magnetic field with reduced interference from one transmitter coil to another. Efficient demodulation schemes are presented which utilise synchronous detection of each magnetic field component experienced by the sensor. The overall tracking accuracy of the system is shown to be less than 2 mm with an orientation error less than 1°. A novel demodulation implementation using a unique undersampling approach allows the use of reduced sample rates to sample the signals of interest without loss of tracking accuracy. This is advantageous for embedded microcontroller implementations of EM tracking systems. The EM tracking system is demonstrated in the pre-clinical environment of a breathing lung phantom. The airways of the phantom are successfully navigated using the system in combination with a 3D computer model rendered from CT data. Registration is achieved using both a landmark rigid registration method and a hybrid fiducial-free approach. The design of a planar magnetic shield structure for blocking the effects of metallic distortion from below the transmitter is presented which successfully blocks the impact of large ferromagnetic objects such as operating tables. A variety of shielding material are analysed with MuMetal and ferrite both providing excellent shieling performance and an increased signal to noise ratio. Finally, the effect of conductive materials and human tissue on magnetic field measurements is presented. Error due to induced eddy currents and capacitive coupling is shown to severely affect EM tracking accuracy at higher frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper dimethylamino-2-propoxide [Cu(dmap)2] is used as a precursor for low-temperature atomic layer deposition (ALD) of copper thin films. Chemisorption of the precursor is the necessary first step of ALD, but it is not known in this case whether there is selectivity for adsorption sites, defects, or islands on the substrate. Therefore, we study the adsorption of the Cu(dmap)2 molecule on the different sites on flat and rough Cu surfaces using PBE, PBE-D3, optB88-vdW, and vdW-DF2 methods. We found the relative order of adsorption energies for Cu(dmap)2 on Cu surfaces is Eads (PBE-D3) > Eads (optB88-vdW) > Eads (vdW-DF2) > Eads (PBE). The PBE and vdW-DF2 methods predict one chemisorption structure, while optB88-vdW predicts three chemisorption structures for Cu(dmap)2 adsorption among four possible adsorption configurations, whereas PBE-D3 predicts a chemisorbed structure for all the adsorption sites on Cu(111). All the methods with and without van der Waals corrections yield a chemisorbed molecule on the Cu(332) step and Cu(643) kink because of less steric hindrance on the vicinal surfaces. Strong distortion of the molecule and significant elongation of Cu–N bonds are predicted in the chemisorbed structures, indicating that the ligand–Cu bonds break during the ALD of Cu from Cu(dmap)2. The molecule loses its initial square-planar structure and gains linear O–Cu–O bonding as these atoms attach to the surface. As a result, the ligands become unstable and the precursor becomes more reactive to the coreagent. Charge redistribution mainly occurs between the adsorbate O–Cu–O bond and the surface. Bader charge analysis shows that electrons are donated from the surface to the molecule in the chemisorbed structures, so that the Cu center in the molecule is partially reduced.