3 resultados para project grant

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductor nanowires, particularly group 14 semiconductor nanowires, have been the subject of intensive research in the recent past. They have been demonstrated to provide an effective, versatile route towards the continued miniaturisation and improvement of microelectronics. This thesis aims to highlight some novel ways of fabricating and controlling various aspects of the growth of Si and Ge nanowires. Chapter 1 highlights the primary technique used for the growth of nanowires in this study, namely, supercritical fluid (SCF) growth reactions. The advantages (and disadvantages) of this technique for the growth of Si and Ge nanowires are highlighted, citing numerous examples from the past ten years. The many variables involved in this technique are discussed along with the resultant characteristics of nanowires produced (diameter, doping, orientation etc.). Chapter 2 outlines the experimental methodologies used in this thesis. The analytical techniques used for the structural characterisation of nanowires produced are also described as well as the techniques used for the chemical analysis of various surface terminations. Chapter 3 describes the controlled self-seeded growth of highly crystalline Ge nanowires, in the absence of conventional metal seed catalysts, using a variety of oligosilylgermane precursors and mixtures of germane and silane compounds. A model is presented which describes the main stages of self-seeded Ge nanowire growth (nucleation, coalescence and Ostwald ripening) from the oligosilylgermane precursors and in conjunction with TEM analysis, a mechanism of growth is proposed. Chapter 4 introduces the metal assisted etching (MAE) of Si substrates to produce Si nanowires. A single step metal-assisted etch (MAE) process, utilising metal ion-containing HF solutions in the absence of an external oxidant, was developed to generate heterostructured Si nanowires with controllable porous (isotropically etched) and non-porous (anisotropically etched) segments. In Chapter 5 the bottom-up growth of Ge nanowires, similar to that described in Chapter 3, and the top down etching of Si, described in Chapter 4, are combined. The introduction of a MAE processing step in order to “sink” the Ag seeds into the growth substrate, prior to nanowire growth, is shown to dramatically decrease the mean nanowire diameters and to narrow the diameter distributions. Finally, in Chapter 6, the biotin – streptavidin interaction was explored for the purposes of developing a novel Si junctionless nanowire transistor (JNT) sensor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Copper dimethylamino-2-propoxide [Cu(dmap)2] is used as a precursor for low-temperature atomic layer deposition (ALD) of copper thin films. Chemisorption of the precursor is the necessary first step of ALD, but it is not known in this case whether there is selectivity for adsorption sites, defects, or islands on the substrate. Therefore, we study the adsorption of the Cu(dmap)2 molecule on the different sites on flat and rough Cu surfaces using PBE, PBE-D3, optB88-vdW, and vdW-DF2 methods. We found the relative order of adsorption energies for Cu(dmap)2 on Cu surfaces is Eads (PBE-D3) > Eads (optB88-vdW) > Eads (vdW-DF2) > Eads (PBE). The PBE and vdW-DF2 methods predict one chemisorption structure, while optB88-vdW predicts three chemisorption structures for Cu(dmap)2 adsorption among four possible adsorption configurations, whereas PBE-D3 predicts a chemisorbed structure for all the adsorption sites on Cu(111). All the methods with and without van der Waals corrections yield a chemisorbed molecule on the Cu(332) step and Cu(643) kink because of less steric hindrance on the vicinal surfaces. Strong distortion of the molecule and significant elongation of Cu–N bonds are predicted in the chemisorbed structures, indicating that the ligand–Cu bonds break during the ALD of Cu from Cu(dmap)2. The molecule loses its initial square-planar structure and gains linear O–Cu–O bonding as these atoms attach to the surface. As a result, the ligands become unstable and the precursor becomes more reactive to the coreagent. Charge redistribution mainly occurs between the adsorbate O–Cu–O bond and the surface. Bader charge analysis shows that electrons are donated from the surface to the molecule in the chemisorbed structures, so that the Cu center in the molecule is partially reduced.