3 resultados para population control
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
European badgers (Meles meles) are an important part of the Irish ecosystem; they are a component of Ireland’s native fauna and are afforded protection by national and international laws. The species is also a reservoir host for bovine tuberculosis (bTB) and implicated in the epidemiology of bTB in cattle. Due to this latter point, badgers have been culled in the Republic of Ireland (ROI) in areas where persistent cattle bTB outbreaks exist. The population dynamics of badgers are therefore of great pure and applied interest. The studies within this thesis used large datasets and a number of analytical approaches to uncover essential elements of badger populations in the ROI. Furthermore, a review and meta-analysis of all available data on Irish badgers was completed to give a framework from which key knowledge gaps and future directions could be identified (Chapter 1). One main finding suggested that badger densities are significantly reduced in areas of repeated culling, as revealed through declining trends in signs of activity (Chapter 2) and capture numbers (Chapter 2 and Chapter 3). Despite this, the trappability of badgers was shown to be lower than previously thought. This indicates that management programmes would require repeated long-term efforts to be effective (Chapter 4). Mark-recapture modelling of a population (sample area: 755km2) suggested that mean badger density was typical of continental European populations, but substantially lower than British populations (Chapter 4). Badger movement patterns indicated that most of the population exhibited site fidelity. Long-distance movements were also recorded, the longest of which (20.1km) was the greatest displacement of an Irish badger currently known (Chapter 5). The studies presented in this thesis allows for the development of more robust models of the badger population at national scales (see Future Directions). Through the use of large-scale datasets future models will facilitate informed sustainable planning for disease control.
Resumo:
Objective: The effect of work on blood pressure (BP) in a general population with appropriate adjustment for confounders is not well defined. High job control has been found to be associated with lower BP and with nocturnal BP dipping. However, with older workers this may be compromised and has not been studied extensively. Methods: A cross-sectional study was carried out on a primary care-based sample (N=2047) aged 50–69 years. Data were collected on sociodemographic factors, medication, clinic, and ambulatory blood pressure. Job control was measured using two scales from the Copenhagen Psychosocial Questionnaire (COPSOQ) (possibility for development and influence at work). Nocturnal systolic BP (SBP) dipping was the reduction in SBP from day- to night-time using ambulatory SBP readings. Results: In general, BP increased with age, male gender, and higher body mass index. Workers with high influence at work and high possibility for development were more likely to have high asleep SBP [odds ratio (OR) 2.13, 95% confidence interval (95% CI) 1.05–4.34, P=0.04], (OR 2.27, 95% CI 1.11–4.66, P=0.03) respectively. Influence at work and awake BP were inversely associated: awake SBP (OR 2.44, 95% CI 1.35–4.41, P<0.01), awake DBP (OR 2.42, 95% CI 1.24–4.72, P=0.01). No association was seen between job control and nocturnal SBP dipping. Conclusion: Older workers with high job control may be more at risk of cardiovascular disease resulting from high day- and night-time BP with no evidence of nocturnal dipping.
Resumo:
Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.