3 resultados para phase conjugate wave

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations of the optical response of subwavelength-structure arrays milled into thin metal films have revealed surprising phenomena, including reports of unexpectedly high transmission of light. Many studies have interpreted the optical coupling to the surface in terms of the resonant excitation of surface plasmon polaritons (SPPs), but other approaches involving composite diffraction of surface evanescent waves (CDEW) have also been proposed. Here we present a series of measurements on very simple one-dimensional subwavelength structures to test the key properties of the surface waves, and compare them to the CDEW and SPP models. We find that the optical response of the silver metal surface proceeds in two steps: a diffractive perturbation in the immediate vicinity (2–3 mu m) of the structure, followed by excitation of a persistent surface wave that propagates over tens of micrometres. The measured wavelength and phase of this persistent wave are significantly shifted from those expected for resonance excitation of a conventional SPP on a pure silver surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracting wave energy from seas has been proven to be very difficult although various technologies have been developed since 1970s. Among the proposed technologies, only few of them have been actually progressed to the advanced stages such as sea trials or pre-commercial sea trial and engineering. One critical question may be how we can design an efficient wave energy converter or how the efficiency of a wave energy converter can be improved using optimal and control technologies, because higher energy conversion efficiency for a wave energy converter is always pursued and it mainly decides the cost of the wave energy production. In this first part of the investigation, some conventional optimal and control technologies for improving wave energy conversion are examined in a form of more physical meanings, rather than the purely complex mathematical expressions, in which it is hoped to clarify some confusions in the development and the terminologies of the technologies and to help to understand the physics behind the optimal and control technologies. As a result of the understanding of the physics and the principles of the optima, a new latching technology is proposed, in which the latching duration is simply calculated from the wave period, rather than based on the future information/prediction, hence the technology could remove one of the technical barriers in implementing this control technology. From the examples given in the context, this new latching control technology can achieve a phase optimum in regular waves, and hence significantly improve wave energy conversion. Further development on this latching control technologies can be found in the second part of the investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wave energy industry is entering a new phase of pre-commercial and commercial deployments of full-scale devices, so better understanding of seaway variability is critical to the successful operation of devices. The response of Wave Energy Converters to incident waves govern their operational performance and for many devices, this is highly dependent on spectral shape due to their resonant properties. Various methods of wave measurement are presented, along with analysis techniques and empirical models. Resource assessments, device performance predictions and monitoring of operational devices will often be based on summary statistics and assume a standard spectral shape such as Pierson-Moskowitz or JONSWAP. Furthermore, these are typically derived from the closest available wave data, frequently separated from the site on scales in the order of 1km. Therefore, variability of seaways from standard spectral shapes and spatial inconsistency between the measurement point and the device site will cause inaccuracies in the performance assessment. This thesis categorises time and frequency domain analysis techniques that can be used to identify changes in a sea state from record to record. Device specific issues such as dimensional scaling of sea states and power output are discussed along with potential differences that arise in estimated and actual output power of a WEC due to spectral shape variation. This is investigated using measured data from various phases of device development.