4 resultados para personal informatics

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces the original concept of a cloud personal assistant, a cloud service that manages the access of mobile clients to cloud services. The cloud personal assistant works in the cloud on behalf of its owner: it discovers services, invokes them, stores the results and history, and delivers the results to the mobile user immediately or when the user requests them. Preliminary experimental results that demonstrate the concept are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents our efforts to bridge the gap between mobile context awareness, and mobile cloud services, using the Cloud Personal Assistant (CPA). The CPA is a part of the Context Aware Mobile Cloud Services (CAMCS) middleware, which we continue to develop. Specifically, we discuss the development and evaluation of the Context Processor component of this middleware. This component collects context data from the mobile devices of users, which is then provided to the CPA of each user, for use with mobile cloud services. We discuss the architecture and implementation of the Context Processor, followed by the evaluation. We introduce context profiles for the CPA, which influence its operation by using different context types. As part of the evaluation, we present two experimental context-aware mobile cloud services to illustrate how the CPA works with user context, and related context profiles, to complete tasks for the user.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mobile cloud computing model promises to address the resource limitations of mobile devices, but effectively implementing this model is difficult. Previous work on mobile cloud computing has required the user to have a continuous, high-quality connection to the cloud infrastructure. This is undesirable and possibly infeasible, as the energy required on the mobile device to maintain a connection, and transfer sizeable amounts of data is large; the bandwidth tends to be quite variable, and low on cellular networks. The cloud deployment itself needs to efficiently allocate scalable resources to the user as well. In this paper, we formulate the best practices for efficiently managing the resources required for the mobile cloud model, namely energy, bandwidth and cloud computing resources. These practices can be realised with our mobile cloud middleware project, featuring the Cloud Personal Assistant (CPA). We compare this with the other approaches in the area, to highlight the importance of minimising the usage of these resources, and therefore ensure successful adoption of the model by end users. Based on results from experiments performed with mobile devices, we develop a no-overhead decision model for task and data offloading to the CPA of a user, which provides efficient management of mobile cloud resources.