4 resultados para peroneus nerve
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The training and ongoing education of medical practitioners has undergone major changes in an incremental fashion over the past 15 years. These changes have been driven by patient safety, educational, economic and legislative/regulatory factors. In the near future, training in procedural skills will undergo a paradigm shift to proficiency based progression with associated requirements for competence-based programmes, valid, reliable assessment tools and simulation technology. Before training begins, the learning outcomes require clear definition; any form of assessment applied should include measurement of these outcomes. Currently training in a procedural skill often takes place on an ad hoc basis. The number of attempts necessary to attain a defined degree of proficiency varies from procedure to procedure. Convincing evidence exists that simulation training helps trainees to acquire skills more efficiently rather than relying on opportunities in their clinical practice. Simulation provides a safe, stress free environment for trainees for skill acquisition, generalization and transfer via deliberate practice. The work described in this thesis contributes to a greater understanding of how medical procedures can be performed more safely and effectively through education. The effect of feedback, provided to novices in a standardized setting on a bench model, based on knowledge of performance was associated with an increase in the speed of skill acquisition and a decrease in error rate during initial learning. The timing of feedback was also associated with effective learning of skill. A marked attrition of skills (independent of the type of feedback provided) was demonstrable 24 hrs after they have first been learned. Using the principles of feedback as described above, when studying the effect of an intense training program on novices of varied years of experience in anaesthesia (i.e. the present training programmes / courses of an intense training day for one or more procedures). There was a marked attrition of skill at 24 hours with a significant correlation with increasing years of experience; there also appeared to be an inverse relationship between years of experience in anaesthesia and performance. The greater the number of years of practice experience, the longer it required a learner to acquire a new skill. The findings of the studies described in this thesis may have important implications for the trainers, trainees and training bodies in the design and implementation of training courses and the formats of delivery of changing curricula. Both curricula and training modalities will need to take account of characteristics of individual learners and the dynamic nature of procedural healthcare.
Resumo:
Ultrasound guidance is now a standard nerve localization technique for peripheral nerve block (PNB). Ultrasonography allows simultaneous visualization of the target nerve, needle, local anesthetic injectate and surrounding anatomical structures. Accurate deposition of local anesthetic next to the nerve is essential to the success of the nerve block procedure. Unfortunately, due to limitations in the visibility of both needle tip and nerve surface, the precise relationship between needle tip and target nerve is unknown at the moment of injection. Importantly, nerve injury may result both from an inappropriately placed needle tip and inappropriately placed local anesthetic. The relationship between the block needle tip and target nerve is of paramount importance to the safe conduct of peripheral nerve block. This review summarizes the evolution of nerve localization in regional anesthesia, characterizes a problem faced by clinicians in performing ultrasound guided nerve block and explores the potential technological solutions to this problem.
Resumo:
This PhD thesis describes work carried out on investigation of various interventions with the aim to optimise the anaesthetic management of patients scheduled to undergo operative fixation of hip fractures. We analysed the perioperative effects of continuous femoral nerve block, single preoperative dose of i.v. dexamethasone, the intention to deposit local anaesthetic in different locations around the femoral nerve during ultrasound guided femoral nerve block, continuous spinal anaesthesia and peri-surgical site infiltration with local anaesthetic after surgical fixation of hip fractures. Continuous femoral nerve block provided more effective preoperative analgesia six hours after the insertion of the perineural catheter compared to a standard opiate-based regimen in patients undergoing operative fixation of fractured hip. A single low dose of preoperative dexamethasone in the intervention group decreased pain scores by 75% six hours after the surgery. Both interventions had no major effect on the functional recovery in the first year after the surgical fixation of fractured hip. The results of the ultrasound guided femoral nerve block trial showed no clinical advantage of intending to deposit local anaesthetic circumferentially during performing femoral nerve block. Using the Dixon and Massey’s “up- and-down” method, we demonstrated that intrathecal 0.26 ml of 0.5% bupivacaine provided adequate surgical anaesthesia within 15 minutes in 50% of patients undergoing operative fixation of hip fracture. Finally, we demonstrated that local anaesthetic infiltration had no effect on pain scores 12 hours after the surgical fixation of fractured neck of femur. In addition to this original body of work, a review article was published on femoral nerve block highlighting the use of ultrasound guidance. In conclusion, the results of this thesis offer an insight into interventions aimed at optimising perioperative analgesia in patients scheduled to undergo operative fixation of hip fractures.
Resumo:
This thesis work covered the fabrication and characterisation of impedance sensors for biological applications aiming in particular to the cytotoxicity monitoring of cultured cells exposed to different kind of chemical compounds and drugs and to the identification of different types of biological tissue (fat, muscles, nerves) using a sensor fabricated on the tip of a commercially available needle during peripheral nerve block procedures. Gold impedance electrodes have been successfully fabricated for impedance measurement on cells cultured on the electrode surface which was modified with the fabrication of gold nanopillars. These nanostructures have a height of 60nm or 100nm and they have highly ordered layout as they are fabricated through the e-beam technique. The fabrication of the threedimensional structures on the interdigitated electrodes was supposed to improve the sensitivity of the ECIS (electric cell-substrate impedance sensing) measurement while monitoring the cytotoxicity effects of two different drugs (Antrodia Camphorata extract and Nicotine) on three different cell lines (HeLa, A549 and BALBc 3T3) cultured on the impedance devices and change the morphology of the cells growing on the nanostructured electrodes. The fabrication of the nanostructures was achieved combining techniques like UV lithography, metal lift-off, evaporation and e-beam lithography techniques. The electrodes were packaged using a pressure sensitive, medical grade adhesive double-sided tape. The electrodes were then characterised with the aid of AFM and SEM imaging which confirmed the success of the fabrication processes showing the nanopillars fabricated with the right layout and dimensions figures. The introduction of nanopillars on the impedance electrodes, however, did not improve much the sensitivity of the assay with the exception of tests carried out with Nicotine. HeLa and A549 cells appeared to grow in a different way on the two surfaces, while no differences where noticed on the BALBc 3T3 cells. Impedance measurements obtained with the dead cells on the negative control electrodes or the test electrodes with the drugs can be compared to those done on the electrodes containing just media in the tested volume (as no cells are attached and cover the electrode surface). The impedance figures recorded using these electrodes were between 1.5kΩ and 2.5 kΩ, while the figures recorded on confluent cell layers range between 4kΩ and 5.5kΩ with peaks of almost 7 kΩ if there was more than one layer of cells growing on each other. There was then a very clear separation between the values of living cell compared to the dead ones which was almost 2.5 - 3kΩ. In this way it was very easy to determine whether the drugs affected the cells normal life cycle on not. However, little or no differences were noticed in the impedance analysis carried out on the two different kinds of electrodes using cultured cells. An increase of sensitivity was noticed only in a couple of experiments carried out on A549 cells growing on the nanostructured electrodes and exposed to different concentration of a solution containing Nicotine. More experiments to achieve a higher number of statistical evidences will be needed to prove these findings with an absolute confidence. The smart needle project aimed to reduce the limitations of the Electrical Nerve Stimulation (ENS) and the Ultra Sound Guided peripheral nerve block techniques giving the clinicians an additional tool for performing correctly the peripheral nerve block. Bioimpedance, as measured at the needle tip, provides additional information on needle tip location, thereby facilitating detection of intraneural needle placement. Using the needle as a precision instrument and guidance tool may provide additional information as to needle tip location and enhance safety in regional anaesthesia. In the time analysis, with the frequency fixed at 10kHz and the samples kept at 12°C, the approximate range for muscle bioimpedance was 203 – 616 Ω, the approximate bioimpedance range for fat was 5.02 - 17.8 kΩ and the approximate range for connective tissue was 790 Ω – 1.55 kΩ. While when the samples were heated at 37°C and measured again at 10kHz, the approximate bioimpedance range for muscle was 100-175Ω. The approximate bioimpedance range of fat was 627 Ω - 3.2 kΩ and the range for connective tissue was 221-540Ω. In the experiments done on the fresh slaughtered lamb carcass, replicating a scenario close to the real application, the impedance values recorded for fat were around 17 kΩ, for muscle and lean tissue around 1.3 kΩ while the nervous structures had an impedance value of 2.9 kΩ. With the data collected during this research, it was possible to conclude that measurements of bioimpedance at the needle tip location can give valuable information to the clinicians performing a peripheral nerve block procedure as the separation (in terms of impedance figures) was very marked between the different type of tissues. It is then feasible to use an impedance electrode fabricated on the needle tip to differentiate several tissues from the nerve tissue. Currently, several different methods are being studied to fabricate an impedance electrode on the surface of a commercially available needle used for the peripheral nerve block procedure.