6 resultados para performance management framework
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In this research we focus on the Tyndall 25mm and 10mm nodes energy-aware topology management to extend sensor network lifespan and optimise node power consumption. The two tiered Tyndall Heterogeneous Automated Wireless Sensors (THAWS) tool is used to quickly create and configure application-specific sensor networks. To this end, we propose to implement a distributed route discovery algorithm and a practical energy-aware reaction model on the 25mm nodes. Triggered by the energy-warning events, the miniaturised Tyndall 10mm data collector nodes adaptively and periodically change their association to 25mm base station nodes, while 25mm nodes also change the inter-connections between themselves, which results in reconfiguration of the 25mm nodes tier topology. The distributed routing protocol uses combined weight functions to balance the sensor network traffic. A system level simulation is used to quantify the benefit of the route management framework when compared to other state of the art approaches in terms of the system power-saving.
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
Current building regulations are generally prescriptive in nature. It is widely accepted in Europe that this form of building regulation is stifling technological innovation and leading to inadequate energy efficiency in the building stock. This has increased the motivation to move design practices towards a more ‘performance-based’ model in order to mitigate inflated levels of energy-use consumed by the building stock. A performance based model assesses the interaction of all building elements and the resulting impact on holistic building energy-use. However, this is a nebulous task due to building energy-use being affected by a myriad of heterogeneous agents. Accordingly, it is imperative that appropriate methods, tools and technologies are employed for energy prediction, measurement and evaluation throughout the project’s life cycle. This research also considers that it is imperative that the data is universally accessible by all stakeholders. The use of a centrally based product model for exchange of building information is explored. This research describes the development and implementation of a new building energy-use performance assessment methodology. Termed the Building Effectiveness Communications ratios (BECs) methodology, this performance-based framework is capable of translating complex definitions of sustainability for energy efficiency and depicting universally understandable views at all stage of the Building Life Cycle (BLC) to the project’s stakeholders. The enabling yardsticks of building energy-use performance, termed Ir and Pr, provide continuous design and operations feedback in order to aid the building’s decision makers. Utilised effectively, the methodology is capable of delivering quality assurance throughout the BLC by providing project teams with quantitative measurement of energy efficiency. Armed with these superior enabling tools for project stakeholder communication, it is envisaged that project teams will be better placed to augment a knowledge base and generate more efficient additions to the building stock.
Resumo:
Political drivers such as the Kyoto protocol, the EU Energy Performance of Buildings Directive and the Energy end use and Services Directive have been implemented in response to an identified need for a reduction in human related CO2 emissions. Buildings account for a significant portion of global CO2 emissions, approximately 25-30%, and it is widely acknowledged by industry and research organisations that they operate inefficiently. In parallel, unsatisfactory indoor environmental conditions have proven to negatively impact occupant productivity. Legislative drivers and client education are seen as the key motivating factors for an improvement in the holistic environmental and energy performance of a building. A symbiotic relationship exists between building indoor environmental conditions and building energy consumption. However traditional Building Management Systems and Energy Management Systems treat these separately. Conventional performance analysis compares building energy consumption with a previously recorded value or with the consumption of a similar building and does not recognise the fact that all buildings are unique. Therefore what is required is a new framework which incorporates performance comparison against a theoretical building specific ideal benchmark. Traditionally Energy Managers, who work at the operational level of organisations with respect to building performance, do not have access to ideal performance benchmark information and as a result cannot optimally operate buildings. This thesis systematically defines Holistic Environmental and Energy Management and specifies the Scenario Modelling Technique which in turn uses an ideal performance benchmark. The holistic technique uses quantified expressions of building performance and by doing so enables the profiled Energy Manager to visualise his actions and the downstream consequences of his actions in the context of overall building operation. The Ideal Building Framework facilitates the use of this technique by acting as a Building Life Cycle (BLC) data repository through which ideal building performance benchmarks are systematically structured and stored in parallel with actual performance data. The Ideal Building Framework utilises transformed data in the form of the Ideal Set of Performance Objectives and Metrics which are capable of defining the performance of any building at any stage of the BLC. It is proposed that the union of Scenario Models for an individual building would result in a building specific Combination of Performance Metrics which would in turn be stored in the BLC data repository. The Ideal Data Set underpins the Ideal Set of Performance Objectives and Metrics and is the set of measurements required to monitor the performance of the Ideal Building. A Model View describes the unique building specific data relevant to a particular project stakeholder. The energy management data and information exchange requirements that underlie a Model View implementation are detailed and incorporate traditional and proposed energy management. This thesis also specifies the Model View Methodology which complements the Ideal Building Framework. The developed Model View and Rule Set methodology process utilises stakeholder specific rule sets to define stakeholder pertinent environmental and energy performance data. This generic process further enables each stakeholder to define the resolution of data desired. For example, basic, intermediate or detailed. The Model View methodology is applicable for all project stakeholders, each requiring its own customised rule set. Two rule sets are defined in detail, the Energy Manager rule set and the LEED Accreditor rule set. This particular measurement generation process accompanied by defined View would filter and expedite data access for all stakeholders involved in building performance. Information presentation is critical for effective use of the data provided by the Ideal Building Framework and the Energy Management View definition. The specifications for a customised Information Delivery Tool account for the established profile of Energy Managers and best practice user interface design. Components of the developed tool could also be used by Facility Managers working at the tactical and strategic levels of organisations. Informed decision making is made possible through specified decision assistance processes which incorporate the Scenario Modelling and Benchmarking techniques, the Ideal Building Framework, the Energy Manager Model View, the Information Delivery Tool and the established profile of Energy Managers. The Model View and Rule Set Methodology is effectively demonstrated on an appropriate mixed use existing ‘green’ building, the Environmental Research Institute at University College Cork, using the Energy Management and LEED rule sets. Informed Decision Making is also demonstrated using a prototype scenario for the demonstration building.
Resumo:
Organizations that leverage lessons learned from their experience in the practice of complex real-world activities are faced with five difficult problems. First, how to represent the learning situation in a recognizable way. Second, how to represent what was actually done in terms of repeatable actions. Third, how to assess performance taking account of the particular circumstances. Fourth, how to abstract lessons learned that are re-usable on future occasions. Fifth, how to determine whether to pursue practice maturity or strategic relevance of activities. Here, organizational learning and performance improvement are investigated in a field study using the Context-based Intelligent Assistant Support (CIAS) approach. A new conceptual framework for practice-based organizational learning and performance improvement is presented that supports researchers and practitioners address the problems evoked and contributes to a practice-based approach to activity management. The novelty of the research lies in the simultaneous study of the different levels involved in the activity. Route selection in light rail infrastructure projects involves practices at both the strategic and operational levels; it is part managerial/political and part engineering. Aspectual comparison of practices represented in Contextual Graphs constitutes a new approach to the selection of Key Performance Indicators (KPIs). This approach is free from causality assumptions and forms the basis of a new approach to practice-based organizational learning and performance improvement. The evolution of practices in contextual graphs is shown to be an objective and measurable expression of organizational learning. This diachronic representation is interpreted using a practice-based organizational learning novelty typology. This dissertation shows how lessons learned when effectively leveraged by an organization lead to practice maturity. The practice maturity level of an activity in combination with an assessment of an activity’s strategic relevance can be used by management to prioritize improvement effort.
Resumo:
The desire to obtain competitive advantage is a motivator for implementing Enterprise Resource Planning (ERP) Systems (Adam & O’Doherty, 2000). However, while it is accepted that Information Technology (IT) in general may contribute to the improvement of organisational performance (Melville, Kraemer, & Gurbaxani, 2004), the nature and extent of that contribution is poorly understood (Jacobs & Bendoly, 2003; Ravichandran & Lertwongsatien, 2005). Accordingly, Henderson and Venkatraman (1993) assert that it is the application of business and IT capabilities to develop and leverage a firm’s IT resources for organisational transformation, rather than the acquired technological functionality, that secures competitive advantage for firms. Application of the Resource Based View of the firm (Wernerfelt, 1984) and Dynamic Capabilities Theory (DCT) (Teece and Pisano (1998) in particular) may yield insights into whether or not the use of Enterprise Systems enhances organisations’ core capabilities and thereby obtains competitive advantage, sustainable or otherwise (Melville et al., 2004). An operational definition of Core Capabilities that is independent of the construct of Sustained Competitive Advantage is formulated. This Study proposes and utilises an applied Dynamic Capabilities framework to facilitate the investigation of the role of Enterprise Systems. The objective of this research study is to investigate the role of Enterprise Systems in the Core Dynamic Capabilities of Asset Lifecycle Management. The Study explores the activities of Asset Lifecycle Management, the Core Dynamic Capabilities inherent in Asset Lifecycle Management and the footprint of Enterprise Systems on those Dynamic Capabilities. Additionally, the study explains the mechanisms by which Enterprise Systems sustain the Exploitability and the Renewability of those Core Dynamic Capabilities. The study finds that Enterprise Systems contribute directly to the Value, Exploitability and Renewability of Core Dynamic Capabilities and indirectly to their Inimitability and Non-substitutability. The study concludes by presenting an applied Dynamic Capabilities framework, which integrates Alter (1992)’s definition of Information Systems with Teece and Pisano (1998)’s model of Dynamic Capabilities to provide a robust diagnostic for determining the sustained value generating contributions of Enterprise Systems. These frameworks are used in the conclusions to frame the findings of the study. The conclusions go on to assert that these frameworks are free - standing and analytically generalisable, per Siggelkow (2007) and Yin (2003).