5 resultados para perceptual narrowing

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation carries out a dialogue between Maurice Merleau-Ponty and Nishida Kitarō concerning their theories of artistic expression and faith. Both philosophers go through remarkably similar trajectories in their philosophic projects: In their early works they focus on the motor-perceptual body of the artist, and as they move towards the mature articulation of their ontologies, the concept of faith becomes central. I propose the term “motor-perceptual faith” to bring these seemingly diverse sets of concerns into a conceptual continuity. My study explores this connection, and argues that the artist’s motor-perceptual expressive body, as colourfully and sometimes poetically articulated in their early works, enacts the form of faith developed more abstractly in their later writings. Exploring these relations fosters a mutual expansion of the early by the later works, thus thickening the concept of faith by seeing it as enacted by the artist, while enlarging the concept of artistic expression by understanding it as a practice of motor‐perceptual faith. Framing these philosophers as putting forth a traditionally religious concept as illustrated by way of artistic expression, offers a new articulation of both of their writings, an important conceptual bridge between the two, while challenging un-ambiguous distinctions between art, philosophy and religion, and ultimately philosophy East and West.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, the concepts of field-independence, closure flexibility, and weak central coherence have been used to denote a locally, rather globally, dominated perceptual style. To date, there has been little attempt to clarify the relationship between these constructs, or to examine the convergent validity of the various tasks purported to measure them. To address this, we administered 14 tasks that have been used to study visual perceptual styles to a group of 90 neuro-typical adults. The data were subjected to exploratory factor analysis. We found evidence for the existence of a narrowly defined weak central coherence (field-independence) factor that received loadings from only a few of the tasks used to operationalise this concept. This factor can most aptly be described as representing the ability to dis-embed a simple stimulus from a more complex array. The results suggest that future studies of perceptual styles should include tasks whose theoretical validity is empirically verified, as such validity cannot be established merely on the basis of a priori task analysis. Moreover, the use of multiple indices is required to capture the latent dimensions of perceptual styles reliably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e.,the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One problem in most three-dimensional (3D) scalar data visualization techniques is that they often overlook to depict uncertainty that comes with the 3D scalar data and thus fail to faithfully present the 3D scalar data and have risks which may mislead users’ interpretations, conclusions or even decisions. Therefore this thesis focuses on the study of uncertainty visualization in 3D scalar data and we seek to create better uncertainty visualization techniques, as well as to find out the advantages/disadvantages of those state-of-the-art uncertainty visualization techniques. To do this, we address three specific hypotheses: (1) the proposed Texture uncertainty visualization technique enables users to better identify scalar/error data, and provides reduced visual overload and more appropriate brightness than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (2) The proposed Linked Views and Interactive Specification (LVIS) uncertainty visualization technique enables users to better search max/min scalar and error data than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (3) The proposed Probabilistic Query uncertainty visualization technique, in comparison to traditional Direct Volume Rendering (DVR) methods, enables radiologists/physicians to better identify possible alternative renderings relevant to a diagnosis and the classification probabilities associated to the materials appeared on these renderings; this leads to improved decision support for diagnosis, as demonstrated in the domain of medical imaging. For each hypothesis, we test it by following/implementing a unified framework that consists of three main steps: the first main step is uncertainty data modeling, which clearly defines and generates certainty types of uncertainty associated to given 3D scalar data. The second main step is uncertainty visualization, which transforms the 3D scalar data and their associated uncertainty generated from the first main step into two-dimensional (2D) images for insight, interpretation or communication. The third main step is evaluation, which transforms the 2D images generated from the second main step into quantitative scores according to specific user tasks, and statistically analyzes the scores. As a result, the quality of each uncertainty visualization technique is determined.