4 resultados para parameter driven model
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG-/-recipients) are reconstituted with naive CD4+ T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4+ T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG-/- hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.
Resumo:
With the proliferation of mobile wireless communication and embedded systems, the energy efficiency becomes a major design constraint. The dissipated energy is often referred as the product of power dissipation and the input-output delay. Most of electronic design automation techniques focus on optimising only one of these parameters either power or delay. Industry standard design flows integrate systematic methods of optimising either area or timing while for power consumption optimisation one often employs heuristics which are characteristic to a specific design. In this work we answer three questions in our quest to provide a systematic approach to joint power and delay Optimisation. The first question of our research is: How to build a design flow which incorporates academic and industry standard design flows for power optimisation? To address this question, we use a reference design flow provided by Synopsys and integrate in this flow academic tools and methodologies. The proposed design flow is used as a platform for analysing some novel algorithms and methodologies for optimisation in the context of digital circuits. The second question we answer is: Is possible to apply a systematic approach for power optimisation in the context of combinational digital circuits? The starting point is a selection of a suitable data structure which can easily incorporate information about delay, power, area and which then allows optimisation algorithms to be applied. In particular we address the implications of a systematic power optimisation methodologies and the potential degradation of other (often conflicting) parameters such as area or the delay of implementation. Finally, the third question which this thesis attempts to answer is: Is there a systematic approach for multi-objective optimisation of delay and power? A delay-driven power and power-driven delay optimisation is proposed in order to have balanced delay and power values. This implies that each power optimisation step is not only constrained by the decrease in power but also the increase in delay. Similarly, each delay optimisation step is not only governed with the decrease in delay but also the increase in power. The goal is to obtain multi-objective optimisation of digital circuits where the two conflicting objectives are power and delay. The logic synthesis and optimisation methodology is based on AND-Inverter Graphs (AIGs) which represent the functionality of the circuit. The switching activities and arrival times of circuit nodes are annotated onto an AND-Inverter Graph under the zero and a non-zero-delay model. We introduce then several reordering rules which are applied on the AIG nodes to minimise switching power or longest path delay of the circuit at the pre-technology mapping level. The academic Electronic Design Automation (EDA) tool ABC is used for the manipulation of AND-Inverter Graphs. We have implemented various combinatorial optimisation algorithms often used in Electronic Design Automation such as Simulated Annealing and Uniform Cost Search Algorithm. Simulated Annealing (SMA) is a probabilistic meta heuristic for the global optimization problem of locating a good approximation to the global optimum of a given function in a large search space. We used SMA to probabilistically decide between moving from one optimised solution to another such that the dynamic power is optimised under given delay constraints and the delay is optimised under given power constraints. A good approximation to the global optimum solution of energy constraint is obtained. Uniform Cost Search (UCS) is a tree search algorithm used for traversing or searching a weighted tree, tree structure, or graph. We have used Uniform Cost Search Algorithm to search within the AIG network, a specific AIG node order for the reordering rules application. After the reordering rules application, the AIG network is mapped to an AIG netlist using specific library cells. Our approach combines network re-structuring, AIG nodes reordering, dynamic power and longest path delay estimation and optimisation and finally technology mapping to an AIG netlist. A set of MCNC Benchmark circuits and large combinational circuits up to 100,000 gates have been used to validate our methodology. Comparisons for power and delay optimisation are made with the best synthesis scripts used in ABC. Reduction of 23% in power and 15% in delay with minimal overhead is achieved, compared to the best known ABC results. Also, our approach is also implemented on a number of processors with combinational and sequential components and significant savings are achieved.
Resumo:
This PhD thesis investigates the potential use of science communication models to engage a broader swathe of actors in decision making in relation to scientific and technological innovation in order to address possible democratic deficits in science and technology policy-making. A four-pronged research approach has been employed to examine different representations of the public(s) and different modes of engagement. The first case study investigates whether patient-groups could represent an alternative needs-driven approach to biomedical and health sciences R & D. This is followed by enquiry into the potential for Science Shops to represent a bottom-up approach to promote research and development of local relevance. The barriers and opportunities for the involvement of scientific researchers in science communication are next investigated via a national survey which is comparable to a similar survey conducted in the UK. The final case study investigates to what extent opposition or support regarding nanotechnology (as an emerging technology) is reflected amongst the YouTube user community and the findings are considered in the context of how support or opposition to new or emerging technologies can be addressed using conflict resolution based approaches to manage potential conflict trajectories. The research indicates that the majority of communication exercises of relevance to science policy and planning take the form of a one-way flow of information with little or no facility for public feedback. This thesis proposes that a more bottom-up approach to research and technology would help broaden acceptability and accountability for decisions made relating to new or existing technological trajectories. This approach could be better integrated with and complementary to government, institutional, e.g. university, and research funding agencies activities and help ensure that public needs and issues are better addressed directly by the research community. Such approaches could also facilitate empowerment of societal stakeholders regarding scientific literacy and agenda-setting. One-way information relays could be adapted to facilitate feedback from representative groups e.g. Non-governmental organisations or Civil Society Organisations (such as patient groups) in order to enhance the functioning and socio-economic relevance of knowledge-based societies to the betterment of human livelihoods.
Resumo:
We firstly examine the model of Hobson and Rogers for the volatility of a financial asset such as a stock or share. The main feature of this model is the specification of volatility in terms of past price returns. The volatility process and the underlying price process share the same source of randomness and so the model is said to be complete. Complete models are advantageous as they allow a unique, preference independent price for options on the underlying price process. One of the main objectives of the model is to reproduce the `smiles' and `skews' seen in the market implied volatilities and this model produces the desired effect. In the first main piece of work we numerically calibrate the model of Hobson and Rogers for comparison with existing literature. We also develop parameter estimation methods based on the calibration of a GARCH model. We examine alternative specifications of the volatility and show an improvement of model fit to market data based on these specifications. We also show how to process market data in order to take account of inter-day movements in the volatility surface. In the second piece of work, we extend the Hobson and Rogers model in a way that better reflects market structure. We extend the model to take into account both first and second order effects. We derive and numerically solve the pde which describes the price of options under this extended model. We show that this extension allows for a better fit to the market data. Finally, we analyse the parameters of this extended model in order to understand intuitively the role of these parameters in the volatility surface.