6 resultados para pacs: production engineering computing

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis I theoretically study quantum states of ultracold atoms. The majority of the Chapters focus on engineering specific quantum states of single atoms with high fidelity in experimentally realistic systems. In the sixth Chapter, I investigate the stability and dynamics of new multidimensional solitonic states that can be created in inhomogeneous atomic Bose-Einstein condensates. In Chapter three I present two papers in which I demonstrate how the coherent tunnelling by adiabatic passage (CTAP) process can be implemented in an experimentally realistic atom chip system, to coherently transfer the centre-of-mass of a single atom between two spatially distinct magnetic waveguides. In these works I also utilise GPU (Graphics Processing Unit) computing which offers a significant performance increase in the numerical simulation of the Schrödinger equation. In Chapter four I investigate the CTAP process for a linear arrangement of radio frequency traps where the centre-of-mass of both, single atoms and clouds of interacting atoms, can be coherently controlled. In Chapter five I present a theoretical study of adiabatic radio frequency potentials where I use Floquet theory to more accurately model situations where frequencies are close and/or field amplitudes are large. I also show how one can create highly versatile 2D adiabatic radio frequency potentials using multiple radio frequency fields with arbitrary field orientation and demonstrate their utility by simulating the creation of ring vortex solitons. In the sixth Chapter I discuss the stability and dynamics of a family of multidimensional solitonic states created in harmonically confined Bose-Einstein condensates. I demonstrate that these solitonic states have interesting dynamical instabilities, where a continuous collapse and revival of the initial state occurs. Through Bogoliubov analysis, I determine the modes responsible for the observed instabilities of each solitonic state and also extract information related to the time at which instability can be observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diminishing non-renewable energy resources and planet-wide de-pollution on our planet are among the major problems which mankind faces into the future. To solve these problems, renewable energy sources such as readily available and inexhaustible sunlight will have to be used. There are however no readily available photocatalysts that are photocatalytically active under visible light; it is well established that the band gap of the prototypical photocatalyst, titanium dioxide, is the UV region with the consequence that only 4% of sun light is utilized. For this reason, this PhD project focused on developing new materials, based on titanium dioxide, which can be used in visible light activated photocatalytic hydrogen production and destruction of pollutant molecules. The main goal of this project is to use simulations based on first principles to engineer and understand rationally, materials based on modifying TiO2 that will have the following properties: (1) a suitable band gap in order to increase the efficiency of visible light absorption, with a gap around 2 – 2.5 eV considered optimum. (2). The second key aspect in the photocatalytic process is electron and hole separation after photoexcitation, which enable oxidation/reduction reactions necessary to i.e. decompose pollutants. (3) Enhanced activity over unmodified TiO2. In this thesis I present results on new materials based on modifying TiO2 with supported metal oxide nanoclusters, from two classes, namely: transition metal oxides (Ti, Ni, Cu) and p-block metal oxides (Sn, Pb, Bi). We find that the deposited metal oxide nanoclusters are stable at rutile and anatase TiO2 surfaces and present an analysis of changes to the band gap of TiO2, identifying those modifiers that can change the band gap to the desirable range and the origin of this. A successful collaboration with experimental researchers in Japan confirms many of the simulation results where the origin of improved visible light photocatalytic activity of oxide nanocluster-modified TiO2 is now well understood. The work presented in this thesis, creates a road map for the design of materials with desired photocatalytic properties and contributes to better understanding these properties which are of great application in renewable energy utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-farm biogas production is typically associated with forage maize as the biomass source. Digesters are designed and operated with the focus of optimising the conditions for this feedstock. Thus, such systems may not be ideally suited to the digestion of grass. Ireland has ca. 3.85 million ha of grassland. Annual excess grass, surplus to livestock requirements, could potentially fuel an anaerobic digestion industry. Biomethane associated with biomass from 1.1 % of grassland in Ireland, could potentially generate over 10 % renewable energy supply in transport. This study aims to identify and optimise technologies for the production of biomethane from grass silage. Mono-digestion of grass silage and co-digestion with slurry, as would occur on Irish farms, is investigated in laboratory trials. Grass silage was shown to have 7 times greater methane potential than dairy slurry on a fresh weight basis (107 m3 t-1 v 16 m3 t-1). However, comprehensive trace element profiles indicated that cobalt, iron and nickel are deficient in mono-digestion of grass silage at a high organic loading rate (OLR) of 4.0 kg VS m-3 d-1. The addition of a slurry co-substrate was beneficial due to its wealth of essential trace elements. To stimulate hydrolysis of high lignocellulose grass silage, particle size reduction (physical) and rumen fluid addition (biological) were investigated. In a continuous trial, digestion of grass silage of <1 cm particle size achieved a specific methane yield of 371 L CH4 kg-1 VS when coupled with rumen fluid addition. The concept of demand driven biogas was also examined in a two-phase digestion system (leaching with UASB). When demand for electricity is low it is recommended to disconnect the UASB from the system and recirculate rumen fluid to increase volatile fatty acid (VFA) and soluble chemical oxygen demand (SCOD) production whilst minimising volatile solids (VS) destruction. At times of high demand for electricity, connection of the UASB increases the destruction of volatiles and associated biogas production. The above experiments are intended to assess a range of biogas production options from grass silage with a specific focus on maximising methane yields and provide a guideline for feasible design and operation of on-farm digesters in Ireland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogas production is the conversion of the organic material into methane (CH4) and carbon dioxide (CO2) under anaerobic conditions. Anaerobic digestion (AD) is widely used in continental and Scandinavian communities as both a waste treatment option and a source of renewable energy. Ireland however lags behind this European movement. Numerous feedstocks exist which could be digested and used to fuel a renewable transport fleet in Ireland. An issue exists with the variety of feedstocks; these need to be assessed and quantified to ascertain their potential resource and application to AD. From literature the ideal C:N ratio is between 25 and 30:1. Low levels of C:N (<15) can lead to problems with ammonia inhibition. Within the digester a plentiful supply of nutrients and a balanced C:N is required for stable performance. Feedstocks were sampled from a range of over 100 different substrates in Ireland including for first, second and third generation feedstocks. The C:N ranged from 81:1 (Winter Oats) to 7:1 (Silage Effluent). The BMP yields were recorded ranging from 38 ± 2.0 L CH4 kg−1 VS for pig slurry (weaning pigs) to 805 ± 57 L CH4 kg−1 VS for used cooking oil (UCO). However the selection of the best preforming feedstock in terms of C:N ratio or BMP yield alone is not sufficiently adequate. A total picture has to be created which includes C:N ratio, BMP yield, harvest yield and availability. Potential feedstocks which best meet these requirements include for Grass silage, Milk processing waste (MPW) and Saccharina latissima. MPW has a potential of meeting over 6 times the required energy for Ireland’s 2020 transport in energy targets. S. Latissima recorded a yield of over 10,000 GJ ha-1 yr-1 which out ranks traditional second generation biofuels by a factor of more than 4.