2 resultados para organic waste in landfills

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.