3 resultados para object-oriented classification

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Object-oriented design and object-oriented languages support the development of independent software components such as class libraries. When using such components, versioning becomes a key issue. While various ad-hoc techniques and coding idioms have been used to provide versioning, all of these techniques have deficiencies - ambiguity, the necessity of recompilation or re-coding, or the loss of binary compatibility of programs. Components from different software vendors are versioned at different times. Maintaining compatibility between versions must be consciously engineered. New technologies such as distributed objects further complicate libraries by requiring multiple implementations of a type simultaneously in a program. This paper describes a new C++ object model called the Shared Object Model for C++ users and a new implementation model called the Object Binary Interface for C++ implementors. These techniques provide a mechanism for allowing multiple implementations of an object in a program. Early analysis of this approach has shown it to have performance broadly comparable to conventional implementations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model for representing music scores in a form suitable for general processing by a music-analyst-programmer is proposed and implemented. Typical input to the model consists of one or more pieces of music which are encoded in a file-based score representation. File-based representations are in a form unsuited for general processing, as they do not provide a suitable level of abstraction for a programmer-analyst. Instead, a representation is created giving a programmer's view of the score. This frees the analyst-programmer from implementation details, that otherwise would form a substantial barrier to progress. The score representation uses an object-oriented approach to create a natural and robust software environment for the musicologist. The system is used to explore ways in which it could benefit musicologists. Methodologies for analysing music corpora are presented in a series of analytic examples which illustrate some of the potential of this model. Proving hypotheses or performing analysis on corpora involves the construction of algorithms. Some unique aspects of using this score model for corpus-based musicology are: - Algorithms impose a discipline which arises from the necessity for formalism. - Automatic analysis enables musicologists to complete tasks that otherwise would be infeasible because of limitations of their energy, attentiveness, accuracy and time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A certain type of bacterial inclusion, known as a bacterial microcompartment, was recently identified and imaged through cryo-electron tomography. A reconstructed 3D object from single-axis limited angle tilt-series cryo-electron tomography contains missing regions and this problem is known as the missing wedge problem. Due to missing regions on the reconstructed images, analyzing their 3D structures is a challenging problem. The existing methods overcome this problem by aligning and averaging several similar shaped objects. These schemes work well if the objects are symmetric and several objects with almost similar shapes and sizes are available. Since the bacterial inclusions studied here are not symmetric, are deformed, and show a wide range of shapes and sizes, the existing approaches are not appropriate. This research develops new statistical methods for analyzing geometric properties, such as volume, symmetry, aspect ratio, polyhedral structures etc., of these bacterial inclusions in presence of missing data. These methods work with deformed and non-symmetric varied shaped objects and do not necessitate multiple objects for handling the missing wedge problem. The developed methods and contributions include: (a) an improved method for manual image segmentation, (b) a new approach to 'complete' the segmented and reconstructed incomplete 3D images, (c) a polyhedral structural distance model to predict the polyhedral shapes of these microstructures, (d) a new shape descriptor for polyhedral shapes, named as polyhedron profile statistic, and (e) the Bayes classifier, linear discriminant analysis and support vector machine based classifiers for supervised incomplete polyhedral shape classification. Finally, the predicted 3D shapes for these bacterial microstructures belong to the Johnson solids family, and these shapes along with their other geometric properties are important for better understanding of their chemical and biological characteristics.