8 resultados para nucleus of the solitary tract
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Duchenne Muscular Dystrophy (DMD) is a fatal multi-system neuromuscular disease caused by loss of dystrophin. The loss of dystrophin from membranes of contractile muscle cells and the dysregulation of the DAPC, induces chronic inflammation due to tissue necrosis and eventual replacement with collagen which weakens muscular force and strength. Dystrophin deficiency may cause under-diagnosed features of DMD include mood disorders such as depression and anxiety and dysfunction of the gastrointestinal tract. The first study in the thesis examined mood in the dystrophin-deficient mdx mouse model of DMD and examined the effects of the tri-cyclic antidepressant, amitriptyline on behaviours. Amitriptyline had anti-depressant and anxiolytic effects in the mdx mice possibly through effects on stress factors such as corticotrophin-releasing factor (CRF). This antidepressant also reduced skeletal muscle inflammation and caused a reduction in circulating interleukin (IL)-6 levels. In the second and third studies, we specifically blocked IL-6 signalling and used Urocortin 2, CRFR2 agonist to investigate their potential as therapeutic targets in mdx mice pathophysiology. Isometric and isotonic contractile properties of the diaphragm, were compared in mdx mice treated with anti IL-6 receptor antibodies (anti IL-6R) and/or Urocortin 2. Deficits in force production, work and power detected in mdx mice were improved with treatment. In study three I investigated contractile properties in gastrointestinal smooth muscle. As compared to wild type mice, mdx mice had slower faecal transit times, shorter colons with thickened muscle layers and increased contractile activity in response to recombinant IL-6. Blocking IL-6 signalling resulted in an increase in colon length, normalised faecal output times and a reduction in IL-6-evoked contractile activity. The findings from these studies indicate that for both diaphragm and gastrointestinal function in a dystrophin-deficient model, targeting of IL-6 and CRFR2 signalling has beneficial therapeutic effects.
Resumo:
The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.
Resumo:
The GABAB receptor is a functional heterodimer comprising the GABAB1 and GABAB2 subunits, with the GABAB1 subunit displaying two major isoforms, GABAB(1a) and GABAB(1b). Preclinical findings have strongly implicated the GABAB receptor in stress-related psychiatric disorders, however, the precise contribution of the GABAB receptor in depression and anxiety disorders remains unknown. Emerging data suggest that the interaction between adverse environmental conditions, such as early life stress, and a specific genetic composition can increase the risk to develop psychiatric disorders in adulthood. This thesis investigated the role of the GABAB receptor alone or in combination with early-life stress (maternal separation), in modulating antidepressant like and anxiety-related behaviours. Pharmacological blockade of the GABAB receptor with CGP52432 had antidepressant-like behavioural effects. Moreover, mice lacking the GABAB(1b) receptor subunit isoform exhibited antidepressant-like behaviours in adulthood but anxiety-like behaviour in early-life. In response to maternal separation, GABAB(1a)-/- mice exhibited early-life stress-induced anhedonia, a core symptom of depression, while GABAB(1b)-/- mice exhibited a more resilient phenotype. Moreover, when compared with wildtype or GABAB(1a)-/- mice, GABAB(1b)-/- mice that underwent maternal separation exhibited enhanced stressinduced neuronal activation in the hippocampus and in the nucleus accumbens (NAcc), a critical area for anhedonia thus suggesting that enhanced stress-induced neuronal activation in the hippocampus and NAcc in GABAB(1b)-/- mice may be important for their antidepressant-like phenotype and their resilience to stress-induced anhedonia. Pharmacological blockade of GABAB receptor and GABAB(1b) receptor subunit isoform loss of function increased adult hippocampal cell proliferation, thus suggesting that increased hippocampal neurogenesis could be a potential mechanism for the antidepressant-like effects of GABAB receptor antagonists and GABAB(1b) receptor subunit isoform disruption. Finally, this thesis investigated whether the expression of several genes involved in hippocampal neurogenesis or the antidepressant response were altered in the mouse hippocampus following chronic treatment with a GABAB receptor antagonist.
Resumo:
Actinins are cytoskeleton proteins that cross-link actin filaments. Evolution of the actinin family resulted in the formation of Ca++-insensitive muscle isoforms (actinin-2 and- 3) and Ca++-sensitive non-muscle isoforms (actinin-1 and -4) with regard to their actin-binding function. Despite high sequence similarity, unique properties have been ascribed to actinin-4 compared with actinin-1. Actinin-4 is the predominant isoform reported to be associated with the cancer phenotype. Actinin-4, but not actinin-1, is essential for normal glomerular function in the kidney and and is able to translocate to the nucleus to regulate transcription. To understand the molecular basis for such isoform-specific functions I have comprehensively compared these proteins in terms of localisation, migration, alternative splicing, actin-binding properties, heterodimer formation and molecular interactions for the first time. This work characterises a number of commercially available actinin antibodies and in doing so, identifies actinin-1, -2 and -4 isoform-specific antibodies that enabled studies of actinin expression and localisation. This work identifies the actinin rod domain as the predominant domain that influences actinin localisation however localisation is likely to be effected by the entire actinin protein. si-RNA- mediated knockdown of actinin-1 and -4 did not affect migration in a number of cell lines highlighting that migration may only require a fraction of total non-muscle actinin levels. This work finds that the Ca++-insensitive variant of actinin-4 is expressed only in the nervous system and thus cannot be regarded as a smooth muscle isoform, as is the case for the Ca++-insensitive variant of actinin-1. This work also identifies a previously unreported exon 19a+19b expressing variant of actinin-4 in human skeletal muscle. This work finds that alternative splice variants of actinin-1 and -4 are co-expressed in a number of tissues, in particular the brain. In contrast to healthy brain, glioblastoma cells express Ca++-sensitive variants of both actinin-1 and -4. Actin-binding properties of actinin-1 and -4 are similar and are unlikely to explain isoform-specific functions. Surprisingly, this work reveals that actinin-1/-4 heterodimers, rather than homodimers, are the most abundant form of actinin in many cancer cell lines. Taken together this data suggests that actinin-1 and -4 cannot be viewed as distinct entities from each other but rather as proteins that can exist in both homodimeric and heterodimeric forms. Finally, this work employs yeast two-hybrid and proteomic approaches to identify actinin-interacting proteins. In doing so, this work identifies a number of putative actinin-4 specific interacting partners that may help to explain some of the unique functions attributed the actinin-4. The observation of alternative splice variants of actinin-1 and -4 combined with the observed potential of these proteins to form homodimers and heterodimers suggests that homodimers and heterodimers with novel actin-binding properties and interaction networks may exist. The ability to behave in this manner may have functional implications. This may be of importance considering that these proteins are central to such processes as cell migration and adhesion. This significantly alters our view of the non-muscle actinins.
Resumo:
It has become clear that inflammation is beneficial to man, there are situations though that the inflammatory response causes damage to the host that is harmful to health. When the inflammatory response fails or is too strong, the health of the host is damaged and disease can occur. The implication of intestinal disease caused by an ineffective immune response is of great social and economic burden to society. The overarching purpose of this thesis is to assess inflammatory signalling targets associated with immune mediated disorders such as IBD, IBS and inflammatory liver disease. By assessing these targets and modifying their function I hope to contribute and expand further the pre-existing information on these disorders and improve the therapeutic interventions available in these debilitating conditions. I will assess the role of inflammation in disorders of the GI tract and liver IBD, IBS, hepatic inflammatory injury and furthermore, I will use pharmaceutical agents to activate and suppress components of the immune system. I will examine the inflammatory response in experimental models of disease for IBD and liver injury, I will attempt to alter these pathways using pharmaceutical intervention to delineate the disease causing mechanism that may lead to clinically relevant therapeutic interventions. In regards to IBS, I will attempt to improve the existing knowledge that exists in relation to the pathogenesis of this functional bowel disorder. I will attempt to define a mechanism by which the low grade mucosal inflammation that has been demonstrated by others arises and what this inflammation is induced by. The overall aim of this thesis is to attempt to further understand the mechanisms behind GI and liver disease. Looking at the inflammatory response in these specific conditions and how they can be altered may lead to exciting new therapies for inflammatory conditions in the gastrointestinal tract.
Resumo:
The human gastrointestinal (GI) tract is colonized by a dense and diverse bacterial community, the commensal microbiota, which plays an important role in the overall health of individuals. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The adaptation of the gut microbiota to our changing life-style is probably the reason for the large inter-individual variation observed among different people. Since the gut microbiota plays an essential role in interactions with host metabolism, it is of utmost importance to explore this relationship. The elderly intestinal microbiota has been the subject of a number of studies in recent years. The results presented in this thesis have further contributed to the expansion of knowledge related to gut microbiota research highlighting the combined effect of culture based and molecular methods as powerful tools for understanding the true impact of microbes. The degree of correlation between measurements from both methods suggested that a single method is capable of profiling intestinal Bifidobacterium spp., Lactobacillus spp. and Enterobacteriaceae populations. Bacteriocins have shown great promise as alternatives to traditional antibiotics. In this respect, the isolation and characterisation of bacteriocinogenic strains are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine. The selection pressure applied on the bacterial population during antibiotic usage is the driving force for the emergence of antibiotic resistant bacteria. Identification of antibiotic resistant isolates opens up the possibility of using such probiotics to offset the problems caused by antibiotics to the gut microbiota and to improve the intestinal microbial environment. Future work is required to explore the culture collection housing thousands of bacterial isolates as a valuable source of potential probiotics for use for the elderly Irish community.
Resumo:
The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.
Resumo:
The amygdala is a limbic structure that is involved in many of our emotions and processing of these emotions such as fear, anger and pleasure. Conditions such as anxiety, autism, and also epilepsy, have been linked to abnormal functioning of the amygdala, owing to improper neurodevelopment or damage. This thesis investigated the cellular and molecular changes in the amygdala in models of temporal lobe epilepsy (TLE) and maternal immune activation (MIA). The kainic acid (KA) model of temporal lobe epilepsy (TLE) was used to induce Ammon’s-horn sclerosis (AHS) and to investigate behavioural and cytoarchitectural changes that occur in the amygdala related to Neuropeptide Y1 receptor expression. Results showed that KA-injected animals showed increased anxiety-like behaviours and displayed histopathological hallmarks of AHS including CA1 ablation, granule cell dispersion, volume reduction and astrogliosis. Amygdalar volume and neuronal loss was observed in the ipsilateral nuclei which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsi- and contralateral granule cell layer of the dentate gyrus and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. The results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and tight regulation and appropriate control of GABA is vital for neurochemical homeostasis. GABA transporter-1 (GAT-1) is abundantly expressed by neurones and astrocytes and plays a key role in GABA reuptake and regulation. Imbalance in GABA homeostasis has been implicated in epilepsy with GAT-1 being an attractive pharmacological target. Electron microscopy was used to examine the distribution, expression and morphology of GAT-1 expressing structures in the amygdala of the TLE model. Results suggest that GAT-1 was preferentially expressed on putative axon terminals over astrocytic processes in this TLE model. Myelin integrity was examined and results suggested that in the TLE model myelinated fibres were damaged in comparison to controls. Synaptic morphology was studied and results suggested that asymmetric (excitatory) synapses occurred more frequently than symmetric (inhibitory) synapses in the TLE model in comparison to controls. This study illustrated that the amygdala undergoes ultrastructural alterations in this TLE model. Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism, schizophrenia and also epilepsy. MIA was induced at a critical window of amygdalar development at E12 using bacterial mimetic lipopolysaccharide (LPS). Results showed that MIA activates cytokine, toll-like receptor and chemokine expression in the fetal brain that is prolonged in the postnatal amygdala. Inflammation elicited by MIA may prime the fetal brain for alterations seen in the glial environment and this in turn have deleterious effects on neuronal populations as seen in the amygdala at P14. These findings may suggest that MIA induced during amygdalar development may predispose offspring to amygdalar related disorders such as heightened anxiety, fear impairment and also neurodevelopmental disorders.