3 resultados para nucleotides

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA editing is a biological phenomena that alters nascent RNA transcripts by insertion, deletion and/or substitution of one or a few nucleotides. It is ubiquitous in all kingdoms of life and in viruses. The predominant editing event in organisms with a developed central nervous system is Adenosine to Inosine deamination. Inosine is recognized as Guanosine by the translational machinery and reverse-transcriptase. In primates, RNA editing occurs frequently in transcripts from repetitive regions of the genome. In humans, more than 500,000 editing instances have been identified, by applying computational pipelines on available ESTs and high-throughput sequencing data, and by using chemical methods. However, the functions of only a small number of cases have been studied thoroughly. RNA editing instances have been found to have roles in peptide variants synthesis by non-synonymous codon substitutions, transcript variants by alterations in splicing sites and gene silencing by miRNAs sequence modifications. We established the Database of RNA EDiting (DARNED) to accommo-date the reference genomic coordinates of substitution editing in human, mouse and fly transcripts from published literatures, with additional information on edited genomic coordinates collected from various databases e.g. UCSC, NCBI. DARNED contains mostly Adenosine to Inosine editing and allows searches based on genomic region, gene ID, and user provided sequence. The Database is accessible at http://darned.ucc.ie RNA editing instances in coding region are likely to result in recoding in protein synthesis. This encouraged me to focus my research on the occurrences of RNA editing specific CDS and non-Alu exonic regions. By applying various filters on discrepancies between available ESTs and their corresponding reference genomic sequences, putative RNA editing candidates were identified. High-throughput sequencing was used to validate these candidates. All predicted coordinates appeared to be either SNPs or unedited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3′-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg2+ ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg2+ (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic di-GMP was the first cyclic di-nucleotide second messenger described, presaging the discovery of additional cyclic di-nucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, to include both enzymatically active and inactive members with a subset involved in synthesis and degradation of other cyclic di-nucleotides. Here we summarize current knowledge of sequence and structural varitions that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL and HD-GYP domain proteins.