3 resultados para network traffic

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research we focus on the Tyndall 25mm and 10mm nodes energy-aware topology management to extend sensor network lifespan and optimise node power consumption. The two tiered Tyndall Heterogeneous Automated Wireless Sensors (THAWS) tool is used to quickly create and configure application-specific sensor networks. To this end, we propose to implement a distributed route discovery algorithm and a practical energy-aware reaction model on the 25mm nodes. Triggered by the energy-warning events, the miniaturised Tyndall 10mm data collector nodes adaptively and periodically change their association to 25mm base station nodes, while 25mm nodes also change the inter-connections between themselves, which results in reconfiguration of the 25mm nodes tier topology. The distributed routing protocol uses combined weight functions to balance the sensor network traffic. A system level simulation is used to quantify the benefit of the route management framework when compared to other state of the art approaches in terms of the system power-saving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. In addition, minimising the number of relay nodes might lead to long routing paths to the sink, which may cause problems of data latency. This data latency is extremely important in wireless sensor network applications such as battlefield surveillance, intrusion detection, disaster rescue, highway traffic coordination, etc. where they must not violate the real-time constraints. Therefore, we also consider the problem of deploying multiple sinks in order to improve the network performance. Previous research has only parts of this problem in isolation, and has not properly considered the problems of moving through a constrained environment or discovering changes to that environment during the repair or network quality after the restoration. In this thesis, we firstly consider a base problem in which we assume the exploration tasks have already been completed, and so our aim is to optimise our use of resources in the static fully observed problem. In the real world, we would not know the radio and physical environments after damage, and this creates a dynamic problem where damage must be discovered. Therefore, we extend to the dynamic problem in which the network repair problem considers both exploration and restoration. We then add a hop-count constraint for network quality in which the desired locations can talk to a sink within a hop count limit after the network is restored. For each new problem of the network repair, we have proposed different solutions (heuristics and/or complete algorithms) which prioritise different objectives. We evaluate our solutions based on simulation, assessing the quality of solutions (node cost, movement cost, computation time, and total restoration time) by varying the problem types and the capability of the agent that makes the repair. We show that the relative importance of the objectives influences the choice of algorithm, and different speeds of movement for the repairing agent have a significant impact on performance, and must be taken into account when selecting the algorithm. In particular, the node-based approaches are the best in the node cost, and the path-based approaches are the best in the mobility cost. For the total restoration time, the node-based approaches are the best with a fast moving agent while the path-based approaches are the best with a slow moving agent. For a medium speed moving agent, the total restoration time of the node-based approaches and that of the path-based approaches are almost balanced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measure quality of service (QoS) in a wireless network architecture of transoceanic aircraft. A distinguishing characteristic of the network scheme we analyze is that it mixes the concept of Delay Tolerant Networking (DTN) through the exploitation of opportunistic contacts, together with direct satellite access in a limited number of the nodes. We provide a graph sparsification technique for deriving a network model that satisfies the key properties of a real aeronautical opportunistic network while enabling scalable simulation. This reduced model allows us to analyze the impact regarding QoS of introducing Internet-like traffic in the form of outgoing data from passengers. Promoting QoS in DTNs is usually really challenging due to their long delays and scarce resources. The availability of satellite communication links offers a chance to provide an improved degree of service regarding a pure opportunistic approach, and therefore it needs to be properly measured and quantified. Our analysis focuses on several QoS indicators such as delivery time, delivery ratio, and bandwidth allocation fairness. Obtained results show significant improvements in all metric indicators regarding QoS, not usually achievable on the field of DTNs.