4 resultados para natural killer cell receptor

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial and immune cell populations. It is widely accepted that cells present in the TME acquire distinct functional phenotypes that promote tumorigenesis. One such cell type is the mesenchymal stromal cell (MSC). Evidence suggests that MSCs exert effects in the colorectal tumour microenvironment including the promotion of angiogenesis, invasion and metastasis. MSCs immunomodulatory capacity may represent another largely unexplored central feature of MSCs tumour promoting capacity. There is considerable evidence to suggest that MSCs and their secreted factors can influence the innate and adaptive immune responses. MSC-immune cell interactions can skew the proliferation and functional activity of T-cells, dendritic cells, natural killer cells and macrophages, which could favour tumour growth and enable tumours to evade immune cell clearance. A better understanding of the interactions between the malignant cancer cell and stromal components of the TME is key to the development of more specific and efficacious therapies for colorectal cancer. Here, we review and explore MSC- mediated mechanisms of suppressing anti-tumour immune responses in the colon tumour microenvironment. Elucidation of the precise mechanism of immunomodulation exerted by tumour-educated MSCs is critical to inhibiting immunosuppression and immune evasion established by the TME, thus providing an opportunity for targeted and efficacious immunotherapy for colorectal cancer growth and metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the fourth most common cause of death from cancer in the world and second most common (behind lung cancer) in developed countries. In recent years there has been much interest in the potential use of prebiotics, probiotics and synbiotics in the prevention and treatment of CRC. We have previously shown that synbiotic consumption in Azoxymethane treated rats modulates the immune system, influences the genotoxic potential of caecal contents and reduces the number of colonic tumours compared to control rats who did not receive the synbiotic. The aim of the current study was to identify biomarkers suitable for use as cancer risk markers and as intervention markers. A second aim was to determine the influence of synbiotic consumption on cancer risk biomarkers such as in vivo colonic mucosal proliferation and genotoxic damage along with examining the genotoxic, cytotoxic and tumour promoting potential of faecal water (FW). Synbiotic consumption altered the composition of the gastrointestinal flora and reduced in vivo genotoxic damage and the genotoxic potential of FW in cancer and polyp subjects. Synbiotic consumption also reduced the proliferative activity in the colonic mucosa in polyp subjects. In both cancer and polyp subjects gene expression in the colonic mucosa was modulated in synbiotic consuming subjects. In this and other studies the activity of natural killer cells, the level of PGE2 in FW, IL-12 production by PBMCs, genotoxic damage in the colonic mucosa and the tumour promoting activities of FW have been identified as possible biomarkers of cancer risk. Future large scale studies investigating these parameters in healthy and diseased individuals are needed to confirm the suitability of these markers in assessing cancer risk and the role of synbiotics in modulating them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The p75 neurotrophin receptor (p75NTR) is a member of the tumour necrosis factor superfamily, which relies on the recruitment of cytosolic protein partners - including the TNF receptor associated factor 6 (TRAF6) E3 ubiquitin ligase - to produce cellular responses such as apoptosis, survival, and inhibition of neurite outgrowth. Recently,p75NTR was also shown to undergo γ-secretase-mediated regulated intramembrane proteolysis, and the receptor ICD was found to migrate to the nucleus where it regulates gene transcription. Moreover, γ-secretase-mediated proteolysis was shown to be involved in glioblastoma cell migration and invasion. In this study we report that TRAF6-mediated K63-linked polyubiquitination at multiple or alternative lysine residues influences p75NTR-ICD stability in vitro. In addition, we found that TRAF6-mediated ubiquitination of p75NTR is not influenced by inhibition of dynamin. Moreover, we report beta-transducin repeats-containing protein (β-TrCP) as a novel E3- ligase that ubiquitinates p75NTR, which is independent of serine phosphorylation of the p75NTR destruction motif. In contrast to its influence on other substrates, co-expression of β-TrCP did not reduce p75NTR stability. We created U87-MG glioblastoma cell lines stably expressing wild type, γ-secretaseresistant and constitutively cleaved receptor, as well as the ICD-stabilized mutant K301R. Interestingly, only wild-type p75NTR induces increased glioblastoma cell migration, which could be reversed by application of γ-secretase inhibitor. Microarray and qRT-PCR analysis of mRNA transcripts in these cell lines yielded several promising genes that might be involved in glioblastoma cell migration and invasion, such as cadherin 11 and matrix metalloproteinase 12. Analysis of potential transcription factor binding sites revealed that transcription of these genes might be regulated by well known p75NTR signalling cascades such as NF-κB or JNK signalling, which are independent of γ-secretase-mediated cleavage of the receptor. In contrast, while p75NTR overexpression was confirmed in melanoma cell lines and a patient sample of melanoma metastasis to the brain, inhibition of γ-secretase did not influence melanoma cell migration. Collectively, this study provides several avenues to better understand the physiological importance of posttranslational modifications of p75NTR and the significance of the receptor in glioblastoma cell migration and invasion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prostate Cancer is a disease that primarily affects elderly men. The incidence of prostate cancer has been progressively increasing in the western world over the last two decades. Life expectancy and diet are believed to be the main factors contributing to this increase in prevalence. Prostate cancer is a slowly progressing disorder and patients often live for over 10 years after initially being diagnosed with prostate cancer. However, patients with hormone refractory prostate cancer have a poor prognosis and generally do not survive for longer than 2 or 3 years. Hormone refractory prostate cancer is responsible for over 200,000 deaths each year and current chemotherapeutic regimens are only useful as palliative agents. The long-term survival rate is poor and chemotherapy does not significantly increase this. Cell lines derived from hormone refractory tumours usually display elevated resistance to many cytotoxic drugs. The Fas receptor is a membrane bound protein capable of binding to a ligand called Fas ligand. Engagement of Fas receptor with Fas ligand results in clustering of Fas receptor on the plasma membrane of cells. A number of proteins responsible for initiating apoptosis are recruited to the plasma membrane and are activated in response to elevated local concentrations. This series of events initiates a proteolysis cascade and that culminates in the degradation of structural and enzymatic processes and the repackaging of cellular constituents within membrane bound vesicles that can be endocytosed and recycled by surrounding phagocytic cells. The Fas receptor is believed to be a key mechanism by which immune cells can destroy damaged cells. Consequently, resistance to Fas receptor mediated apoptosis often correlates with tumour progression. It has been reported that prostate cancer cell lines display elevated resistance to Fas receptor mediated apoptosis and this correlates with the stage of tumour from which the cell lines were isolated. JNK, a stress-activated protein kinase, has been implicated both with increased survival and increased apoptosis in prostate cancer. Elevated endogenous JNK activity has been demonstrated to correlate with prostate cancer progression. It has been shown that endogenous JNK activity increases the expression of anti-apoptotic proteins and can increase the resistance of prostate cancer cell lines to chemotherapy. In addition, elevated endogenous JNK activity is required for improved proliferation and transformation of a number of epithelial tumours. However, prolonged JNK activation in response to cytotoxic stimuli can increase the sensitivity of cells to apoptosis. Prolonged JNK activity appears to induce the expression of a separate set of genes responsible for promoting apoptosis. Our group has recently shown that activation of JNK by chemotherapeutic drugs can sensitise DU 145 prostate carcinoma cells to Fas receptor mediated apoptosis. In order toidentify novel targets for treating hormone refractory prostate cancer we have investigated the role of JNK in Fas receptor mediated apoptosis. We have demonstrated that prolonged JNK activation is defective in DU 145 cells in response to Fas receptor activation alone. Co-administering anisomycin, a JNK agonist, greatly enhances the ability of DU 145 cells to undergo apoptosis by increasing the rate of Caspase 8 cleavage. We also investigated the role of endogenous JNK activity in Fas receptor mediated.