3 resultados para mouth cavity

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The treatment of oral cancer is complex and lengthy. Curative treatment implies a combination of surgery, radiotherapy and chemotherapy. The main goal of treatment is to guarantee long-term tumour free survival with as little functional and cosmetic damage. Despite progress in developing these strategies, cancers of the oral cavity continue to have high mortality rates that have not improved dramatically over the past ten years. Aim: The aim of this study was to uniquely explore the dynamic changes in the physical, psychological, social and existential experiences of newly diagnosed patients with oral cancer at two points across their cancer illness trajectory i.e. at the time of diagnosis and at the end of treatment. Methodology: A qualitative prospective longitudinal design was employed. Non-probability purposive sampling allowed the recruitment of 10 participants. The principal data collection method used was a digital audio taped semi-structured interview along with drawings produced by the participants. Analysis: Data was analysed using latent content analyses. Summary: Three ‘dynamic’ themes, physical, psychosocial and existential experiences were revealed that interact and influence each other in a complex and compound whole. These experiences are present at different degrees and throughout the entire trajectory of care. Patients have a number of specific concerns and challenges that cannot be compartmentalised into unitary or discrete aspects of their daily lives. Conclusion & Implications: An understanding of the patient’s experience of their illness at all stages of the disease trajectory, is essential to inform service providers’ decision making if the delivery of care is to be client centred. Dynamic and fluctuating changes in the patient’s personal experience of the cancer journey require dynamic, energetic and timely input from health care professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although broadband incoherent light does not efficiently couple into a high-finesse optical cavity, its transmission is readily detectable and enables applications in cavity-enhanced absorption spectroscopy in the gas phase, liquid phase and on surfaces. This chapter gives an overview of measurement principles and experimental approaches implementing incoherent light sources in cavity-enhanced spectroscopic applications. The general principles of broadband CEAS are outlined and general “pros and cons” discussed, detailing aspects like cavity mirror reflectivity calibration or the establishment of detection limits. Different approaches concerning light sources, cavity design and detection schemes are discussed and a comprehensive overview of the current literature based on a methodological classification scheme is also presented.