2 resultados para model reference adaptive control systems
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Model predictive control (MPC) has often been referred to in literature as a potential method for more efficient control of building heating systems. Though a significant performance improvement can be achieved with an MPC strategy, the complexity introduced to the commissioning of the system is often prohibitive. Models are required which can capture the thermodynamic properties of the building with sufficient accuracy for meaningful predictions to be made. Furthermore, a large number of tuning weights may need to be determined to achieve a desired performance. For MPC to become a practicable alternative, these issues must be addressed. Acknowledging the impact of the external environment as well as the interaction of occupants on the thermal behaviour of the building, in this work, techniques have been developed for deriving building models from data in which large, unmeasured disturbances are present. A spatio-temporal filtering process was introduced to determine estimates of the disturbances from measured data, which were then incorporated with metaheuristic search techniques to derive high-order simulation models, capable of replicating the thermal dynamics of a building. While a high-order simulation model allowed for control strategies to be analysed and compared, low-order models were required for use within the MPC strategy itself. The disturbance estimation techniques were adapted for use with system-identification methods to derive such models. MPC formulations were then derived to enable a more straightforward commissioning process and implemented in a validated simulation platform. A prioritised-objective strategy was developed which allowed for the tuning parameters typically associated with an MPC cost function to be omitted from the formulation by separation of the conflicting requirements of comfort satisfaction and energy reduction within a lexicographic framework. The improved ability of the formulation to be set-up and reconfigured in faulted conditions was shown.
Resumo:
Gluten sensitive consumers and people suffering from coeliac disease account for up to 6% of the general population (Catassi et al., 2013). These consumers must avoid foods which contain gluten and related proteins found in wheat, rye or barley. Beer is produced from barley malt and therefore contains hordeins, (gluten like proteins). Beers labelled as gluten-free must contain below 10 mg/kg hordeins (10 mg/kg hordeins = 20 mg/kg gluten under current regulations) to be considered safe for gluten sensitive consumers. Currently there are a limited number of methods available for reducing beer hordeins, the studies outlined in this thesis provide a range of tools for the beverage industry to reduce the hordein content of beer It is well known, that during malting and brewing hordeins are reduced, but they still remain in beer at levels above 10 mg/kg. During malting, hordeins are broken down to form new proteins in the growing plant. Model malting and brewing systems were developed and used to test, how the modification of the malting process could be used to reduce beer hordeins. It was shown, that by using a controlled malting and brewing regime, a range of barley cultivars produced beer with significant differences in levels of hordeins. Beer hordeins ranged from 10 mg/kg to 60 mg/kg. Another study revealed that when malting was prolonged, to maximise breakdown of proteins, beer hordeins can be reduced by up to 44%. The natural breakdown of hordein during malting enhanced in a further study, when a protease was added to support the hordein degradation during steeping and germination. The enzyme addition resulted in a 46% reduction in beer hordeins 2 when compared to the control. All of the malt treatments had little or no impact on malt quality. The hordein levels can also be reduced during the beer stabilisation process. Levels of beer hordein were tested after stabilisation using two different concentrations of silica gel and tannic acid. Silica gel was very effective in reducing beer hordeins, 90% of beer hordeins were removed compared to the control beer. Beer hordeins could be reduced to below 10 mg/kg and the beer qualities such as foam, colour and flavour were not affected. Tannic acid also reduced beer hordein by up to 90%, but it reduced foam stability and affected beer flavours. A further study described treatment of beer with microbial transglutaminase (mTG), to create bonds between hordein proteins, which increased particle size and allowed removal during filtration. The addition of the mTG led to a reduction of the beer hordein by up to 96% in beer, and the impact on the resulting beer quality was minimal. These studies provide the industry with a toolbox of methods leading to the reduction of hordein in the final beer without negatively affecting beer quality.