1 resultado para mining data streams
em CORA - Cork Open Research Archive - University College Cork - Ireland
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberdeen University (8)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (101)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (64)
- Cochin University of Science & Technology (CUSAT), India (9)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (23)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- DRUM (Digital Repository at the University of Maryland) (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (23)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (12)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (11)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (27)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (12)
- Universidad Politécnica de Madrid (39)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (20)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (13)
- Université de Lausanne, Switzerland (16)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Michigan (12)
- University of Queensland eSpace - Australia (175)
- University of Southampton, United Kingdom (9)
- University of Washington (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Heating, ventilation, air conditioning (HVAC) systems are significant consumers of energy, however building management systems do not typically operate them in accordance with occupant movements. Due to the delayed response of HVAC systems, prediction of occupant locations is necessary to maximize energy efficiency. We present an approach to occupant location prediction based on association rule mining, allowing prediction based on historical occupant locations. Association rule mining is a machine learning technique designed to find any correlations which exist in a given dataset. Occupant location datasets have a number of properties which differentiate them from the market basket datasets that association rule mining was originally designed for. This thesis adapts the approach to suit such datasets, focusing the rule mining process on patterns which are useful for location prediction. This approach, named OccApriori, allows for the prediction of occupants’ next locations as well as their locations further in the future, and can take into account any available data, for example the day of the week, the recent movements of the occupant, and timetable data. By integrating an existing extension of association rule mining into the approach, it is able to make predictions based on general classes of locations as well as specific locations.