2 resultados para methods of teaching
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
For two multinormal populations with equal covariance matrices the likelihood ratio discriminant function, an alternative allocation rule to the sample linear discriminant function when n1 ≠ n2 ,is studied analytically. With the assumption of a known covariance matrix its distribution is derived and the expectation of its actual and apparent error rates evaluated and compared with those of the sample linear discriminant function. This comparison indicates that the likelihood ratio allocation rule is robust to unequal sample sizes. The quadratic discriminant function is studied, its distribution reviewed and evaluation of its probabilities of misclassification discussed. For known covariance matrices the distribution of the sample quadratic discriminant function is derived. When the known covariance matrices are proportional exact expressions for the expectation of its actual and apparent error rates are obtained and evaluated. The effectiveness of the sample linear discriminant function for this case is also considered. Estimation of true log-odds for two multinormal populations with equal or unequal covariance matrices is studied. The estimative, Bayesian predictive and a kernel method are compared by evaluating their biases and mean square errors. Some algebraic expressions for these quantities are derived. With equal covariance matrices the predictive method is preferable. Where it derives this superiority is investigated by considering its performance for various levels of fixed true log-odds. It is also shown that the predictive method is sensitive to n1 ≠ n2. For unequal but proportional covariance matrices the unbiased estimative method is preferred. Product Normal kernel density estimates are used to give a kernel estimator of true log-odds. The effect of correlation in the variables with product kernels is considered. With equal covariance matrices the kernel and parametric estimators are compared by simulation. For moderately correlated variables and large dimension sizes the product kernel method is a good estimator of true log-odds.
Resumo:
A constructivist philosophy underlies the Irish primary mathematics curriculum. As constructivism is a theory of learning its implications for teaching need to be addressed. This study explores the experiences of four senior class primary teachers as they endeavour to teach mathematics from a constructivist-compatible perspective with primary school children in Ireland over a school-year period. Such a perspective implies that children should take ownership of their learning while working in groups on tasks which challenge them at their zone of proximal development. The key question on which the research is based is: to what extent will an exposure to constructivism and its implications for the classroom impact on teaching practices within the senior primary mathematics classroom in both the short and longer term? Although several perspectives on constructivism have evolved (von Glaserfeld (1995), Cobb and Yackel (1996), Ernest (1991,1998)), it is the synthesis of the emergent perspective which becomes pivotal to the Irish primary mathematics curriculum. Tracking the development of four primary teachers in a professional learning initiative involving constructivist-compatible approaches necessitated the use of Borko’s (2004) Phase 1 research methodology to account for the evolution in teachers’ understanding of constructivism. Teachers’ and pupils’ viewpoints were recorded using both audio and video technology. Teachers were interviewed at the beginning and end of the project and also one year on to ascertain how their views had evolved. Pupils were interviewed at the end of the project only. The data were analysed from a Jaworskian perspective i.e. using the categories of her Teaching Triad of management of learning, mathematical challenge and sensitivity to students. Management of learning concerns how the teacher organises her classroom to maximise learning opportunities for pupils. Mathematical challenge is reminiscent of the Vygotskian (1978) construct of the zone of proximal development. Sensitivity to students involves a consciousness on the part of the teacher as to how pupils are progressing with a mathematical task and whether or not to intervene to scaffold their learning. Through this analysis a synthesis of the teachers’ interpretations of constructivist philosophy with concomitant implications for theory, policy and practice emerges. The study identifies strategies for teachers wishing to adopt a constructivist-compatible approach to their work. Like O’Shea (2009) it also highlights the likely difficulties to be experienced by such teachers as they move from utilising teacher-dominated methods of teaching mathematics to ones in which pupils have more ownership over their learning.