3 resultados para math.OA
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
A small proportion of harmful algae produce toxins which are harmful to human health. Strict monitoring programmes are in place within Ireland and the EU to effectively manage risk to human consumers of shellfish species that have accumulated marine biotoxins in their tissues. However, little is known about the impacts of HABs on shellfish health. This study used Solid Phase Adsorption and Toxin Tracking (SPATT) for the passive sampling of algal biotoxins at Lough Hyne Marine Nature Reserve in West Cork, Ireland. Spatial and temporal monitoring of the incidence of a wide range of lipophilic toxins was assessed over a 4-month period. Active sampling accumulated sufficient quantities of toxin for use in subsequent experimentation. In addition to commonly occurring Diarrhetic Shellfish Poisoning (DSP) toxins, Dinophysis toxin-1 and Pinnatoxin-G were both detected in the samples. This is the first identification of these latter two toxins in Irish waters. The effects of the DSP toxin okadaic acid (OA) were investigated on three shellfish species: Mytilus edulis, Ruditapes philippinarum and Crassostrea gigas. Histological examination of the gill, mantle and hepatopancreas tissues revealed varying intensity of damage depending both on the tissue type and the species involved. At the cellular level, flow cytometric analysis of the differential cell population distribution was assessed. No change in cell population distribution was observed in Mytilus edulis or Ruditapes philippinarum, however significant changes were observed in Crassostrea gigas granulocytes at the lower levels of toxin exposure. This indicated a chemically-induced response to OA. DNA fragmentation was measured in the haemolymph and hepatopancreas cells post OA-exposure in Mytilus edulis and Crassostrea gigas. A significant increase in DNA fragmentation was observed in both species over time, even at the lowest OA concentrations. DNA fragmentation could be due to genotoxicity of OA and/or to the induction of cell apoptosis.
Resumo:
The present study investigated the genotoxic potential of the marine biotoxins okadaic acid (OA) and azaspiracids (AZAs). Harmful algae blooms (HABs) are an increasing global problem with implications for the ecosystem, economy and human health. Most data available on human intoxication are based on acute toxicity. To date, limited data has been published on possible long term effects, carcinogenicity and genotoxicity. To investigate genotoxicity in the present study, DNA fragmentation was detected using the COMET assay. In contrast to most other available studies, two further endpoints were included. The Trypan Blue Exclusion assay was used to provide information on possible cytotoxicity and assess the right concentration range. Flow cytometer analysis was included to detect the possible involvement of apoptotic processes. In house background data for all endpoints were established using positive controls. Three different cell lines, Jurkat T cells, CaCo-2 cells and HepG-2 cells, representing the main target organs, were exposed to OA and AZA1-3 at different concentrations and exposure times. Data obtained from the COMET assay showed an increase in DNA fragmentation for all phycotoxins, indicating a modest genotoxic effect. However, the data obtained from the Trypan Blue Exclusion assay showed a clear reduction in cell viability and cell number, indicating the involvement of cytotoxic and/or apoptotic processes. This is supported by data obtained by flow cytometer analysis. All phycotoxins investigated showed signs of early/late apoptosis. Therefore, the combined observations made in the present study indicate that OA and AZA1-3 are not genotoxic per se. Apoptotic processes appear to make a major contribution to the observed DNA fragmentation. The information obtained in this study stresses the importance of inclusion of additional endpoints and appropriate positive controls in genotoxicity studies. Furthermore, these data can assist in future considerations on risk assessment, especially regarding repeated exposure and exposure at sub-clinical doses.
Resumo:
Introduction: There is accumulating evidence of an increased risk of cardiovascular morbidity and mortality in rheumatoid arthritis patients. A combination of both traditional cardiovascular risks and rheumatoid specific factors appear to be responsible for driving this phenomenon. Rheumatoid arthritis has been an orphan of cardiologists in the past and rheumatologists themselves are not good at CVD screening. Identifying the extent of preclinical atherosclerosis in RA patients will help us to appreciate the magnitude of this serious problem in an Irish population. Methods: We undertook a cross-sectional study of 63 RA patients and 48 OA controls and compared the 2 groups with respect to 1) traditional CV risks factors, 2) serum biomarkers of inflammation, including CRP, TNFα, IL6 and PAI-1, 3) carotid intima-media thickness (cIMT), carotid plaque and ankle-brachial index (ABI) as markers of pre-clinical atherosclerosis, 4) biochemical and ultrasonic measures of endothelial dysfunction and 5) serum and echocardiographic measures of diastolic dysfunction. Within the RA group, we also investigated for associations between markers of inflammation, subclinical atherosclerosis and diastolic dysfunction. Results: Prevalence of traditional CV risks was similar in the RA and OA groups. A number of biomarkers of inflammation were significantly higher in the RA group: CRP, fibrinogen, IL- 2, -4, -6, TNFα. PAI-1, a marker of thrombosis, correlated with disease activity and subclinical atherosclerosis in RA patients. With regard to subclinical atherosclerosis measures, RA patients had a significantly lower ABI than OA patients. Carotid plaque and cIMT readings were similar in RA and OA patients. Assessment of endothelial function revealed that RA patients had significantly higher concentrations of adhesion molecules, in particular sero-positive RA patients and RA smokers. Adhesion molecule concentrations were associated with markers of diastolic dysfunction in RA. Urine PCR, another marker of endothelial dysfunction also correlated with diastolic dysfunction in RA. Assessment of endothelial function with flow mediated dilatation (FMD) found no difference between the RA and OA groups. Disease activity scores in RA patients were associated with endothelial dysfunction, as assessed by FMD. Conclusions: We did not find significant differences in measures of subclinical atherosclerosis, flow mediated dilatation or diastolic function between RA and OA patients. This is most likely in part due to the fact that there is increasing evidence that OA has an inflammatory component to its pathogenesis and is associated with metabolic syndrome and increased CV risk. We reported a significant association between urinary PCR and measures of diastolic dysfunction. Urinary PCR may be a useful screening tool for diastolic dysfunction in RA. The association between RA disease activity and measures of vascular function supports the theory that the excess cardiovascular burden in RA is linked to uncontrolled inflammation.