3 resultados para maternal fatigue
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The purpose of this preliminary study is to identify signs of fatigue in specific muscle groups that in turn directly influence accuracy in professional darts. Electromyography (EMG) sensors are employed to monitor the electrical activity produced by skeletal muscles of the trunk and upper limb during throw. It is noted that the Flexor Pollicis Brevis muscle which controls the critical release action during throw shows signs of fatigue. This is accompanied by an inherent increase in mean integral EMG amplitude for a number of other throw related muscles indicating an attempt to maintain constant applied throwing force. A strong correlation is shown to exist between average score and decrease in mean integral ECG amplitude for the Flexor Pollicis Brevis.
Resumo:
Background: Cancer related fatigue (CRF) is considered the most severe, debilitating and under-managed symptom of cancer. Patients receiving chemotherapy experience high levels of CRF which profoundly impacts on their lives. Aim: 1). To explore and measure CRF and determine the most effective self-care strategies used to combat CRF in a cohort of patients with a diagnosis of cancer (breast cancer, colorectal cancer, Hodgkin’s and Non-Hodgkin’s lymphoma) 2). To explore self-care agency and its relationship to CRF. Method: A mixed methods study which incorporated a descriptive, comparative, correlational design and qualitative descriptions of patients’ (n=362) experiences gleaned through open ended questions and use of a diary. The study utilised The Revised Pipers Fatigue Scale, the Appraisal of Self-Care Agency and a researcher developed Fatigue Visual Analogue Scale, Fatigue Self-Care Survey, and Diary. Findings: Having breast cancer, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma; using the strategies of counselling, taking a 20–30 minute nap, resting and sleeping, self-monitoring and complementary therapies were all associated with increased odds of developing fatigue. Increased self-care agency; being in the divorced / separated cohort; being widowed; increased length of time since commencement of chemotherapy; engagement in exercise, and socializing were associated with a reduced risk of developing fatigue. Females had 20% higher fatigue levels than males (p=<.001). Receiving support was the strategy used most frequently and rated most effective. Fatigue was very problematic and distressing, four key qualitative categories emerged: the behavioural impact, affective impact, the sensory impact, and the cognitive impact. Keeping a diary was considered very beneficial and cathartic. Conclusions: Fatigue severely impacted on the daily lives of patients undergoing chemotherapy. There are a range of self-care strategies that patients should be encouraged to use e.g. exercise, socializing, and enhancement of psychological well-being. The enhancement of self-care agency and use of diaries should also be considered.
Resumo:
The amygdala is a limbic structure that is involved in many of our emotions and processing of these emotions such as fear, anger and pleasure. Conditions such as anxiety, autism, and also epilepsy, have been linked to abnormal functioning of the amygdala, owing to improper neurodevelopment or damage. This thesis investigated the cellular and molecular changes in the amygdala in models of temporal lobe epilepsy (TLE) and maternal immune activation (MIA). The kainic acid (KA) model of temporal lobe epilepsy (TLE) was used to induce Ammon’s-horn sclerosis (AHS) and to investigate behavioural and cytoarchitectural changes that occur in the amygdala related to Neuropeptide Y1 receptor expression. Results showed that KA-injected animals showed increased anxiety-like behaviours and displayed histopathological hallmarks of AHS including CA1 ablation, granule cell dispersion, volume reduction and astrogliosis. Amygdalar volume and neuronal loss was observed in the ipsilateral nuclei which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsi- and contralateral granule cell layer of the dentate gyrus and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. The results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and tight regulation and appropriate control of GABA is vital for neurochemical homeostasis. GABA transporter-1 (GAT-1) is abundantly expressed by neurones and astrocytes and plays a key role in GABA reuptake and regulation. Imbalance in GABA homeostasis has been implicated in epilepsy with GAT-1 being an attractive pharmacological target. Electron microscopy was used to examine the distribution, expression and morphology of GAT-1 expressing structures in the amygdala of the TLE model. Results suggest that GAT-1 was preferentially expressed on putative axon terminals over astrocytic processes in this TLE model. Myelin integrity was examined and results suggested that in the TLE model myelinated fibres were damaged in comparison to controls. Synaptic morphology was studied and results suggested that asymmetric (excitatory) synapses occurred more frequently than symmetric (inhibitory) synapses in the TLE model in comparison to controls. This study illustrated that the amygdala undergoes ultrastructural alterations in this TLE model. Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism, schizophrenia and also epilepsy. MIA was induced at a critical window of amygdalar development at E12 using bacterial mimetic lipopolysaccharide (LPS). Results showed that MIA activates cytokine, toll-like receptor and chemokine expression in the fetal brain that is prolonged in the postnatal amygdala. Inflammation elicited by MIA may prime the fetal brain for alterations seen in the glial environment and this in turn have deleterious effects on neuronal populations as seen in the amygdala at P14. These findings may suggest that MIA induced during amygdalar development may predispose offspring to amygdalar related disorders such as heightened anxiety, fear impairment and also neurodevelopmental disorders.